首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been thought for a long time that the luminosity of the Sun has remained constant since the Sun evolved into the Main Sequence stage almost 4.5 billion yr ago. However, many of recent data obtained from the isotopic analyses in the tree rings, meteoritic and lunar samples have shown that the luminosity and the activity of the Sun must have been varied for such long years. It seems that the one of the most important discoveries on the variability of the Sun is that of the Maunder Minimum (1645–1715), during which the solar activity had been extremely weak so that no sunspot had been observed for almost seventy years. Furthermore, this minimum was almost coincident with the severest period of the Little Ice Age having covered the Earth from the early 14th to the middle 19th centuries. These results suggest a possible connection between the long-term variation of the Earth's climate and that of the solar activity.The Sun shines as emitting continuously the nuclear energy as light quanta. As well known, this energy is almost constantly being released from the thermonuclear reactions taking place in the central core of the Sun. Whenever the efficiency of these reactions changes due to some mechanisms to occur inside the Sun, the light emissivity from the Sun, namely, the Sun's luminosity, would change accordingly. Thus some change in the physical processes inside the Sun may always induce various kinds of variability as related to the rearrangement of the internal structure of the Sun. As a result of this kind of change, the Earth's climatic condition also seems to be critically influenced in association with the variation of the Sun's luminosity. Since it seems that the mean level of the solar activity for a long time, say, 100 yr, is dependent on the long-term change in the physical processes inside the Sun as related to the variation of the solar luminosity, the Earth's climatic condition may be necessarily changeable as dependent on the long-term variation of the solar activity. Some evidence is here shown by reviewing the historical records on the climatic change.A brief account is finally given on the possible origin of the inconstancy in the solar luminosity and activity.  相似文献   

2.
A coupled climate model is used to explore the regional response of the climate system to solar forcing, with emphasis on the role of the ocean. It is shown that both the transient and the equilibrium response of surface temperature to changes in total solar irradiation is smaller over ocean than over land because of the ocean’s large heat capacity and the feedback involving evaporation. Furthermore, the advection of temperature anomalies and changes in ocean currents have an impact on the timing and the geographical distribution of the response. Nevertheless, at regional scales, the response to the forcing is embedded within the large internal variability of the system making the detection and analysis of the forced response difficult. Furthermore, this forced response could imply both changes in the mean state of the system as well as in its variability.  相似文献   

3.
Technology review of aeroengine pollutant emissions   总被引:1,自引:0,他引:1  
The Environmental effects issue of air traffic has been gaining increasing public attention. This has led to a considerable world-wide effort to reduce aircraft emissions. The task encompasses a broad variety of scientific and technological problems which are reviewed.The concerns about atmospheric effects have been based largely on laboratory information and experience from weather and climatic simulations. Research carried out over the past few years will improve the understanding of physical and chemical interaction phenomena and will support regulatory activities. Operational changes of airline flight profiles would be of benefit to the reduction of NOx released into the stratosphere but would probably involve a major economic penalty. Emissions reductions through improved engine technology offer an overall potential of 10 % lower fuel burn but will also require a considerable component development effort and investment.Combustion technology appears most promising and industry is concentrating research in this area. Over the past two decades smoke emissions have become negligible and oxides of nitrogen have been reduced by 50 %. Staged combustion and emerging lean premix and rich-burn quick-quench lean-burn technologies are potentially good for another 50 % reduction. Alternative gaseous fuels will become of interest only in the context of a necessity to generally replace crude oil fuels.  相似文献   

4.
Meteoroid orbits     
Numerically-speaking, the orbits of meteoroids dominate our knowledge of the orbital parameters of Earth-crossing small bodies: the meteoroid orbit database outstrips the numbers of observed Earth-crossing asteroids and comets by over two orders of magnitude. Whilst it is often imagined that small meteoroids are predominantly derived from comets through stream formation, and thus must have comet-like orbits, in fact the majority of observed meteoroid orbits are more similar to those of Apollo and Aten asteroids, with small, low-inclination orbits. In all about 69 000 meteoroid orbits are available from the IAU Meteor Data Center in Lund, Sweden, having been measured in various optical and radar observation programs based in the U.S.A., Canada, the former Soviet Union, Somalia, the Czech Republic, Japan, and Australia. Depending upon the detection method used, the original meteoroids producing the observed meteoric phenomena range in size from 100 m to 10 cm. Here the raw orbital, radiant and speed distributions are presented for the major surveys, a common format being used so that they may be intercompared such that general conclusions may be drawn, and the differences between the survey results identified. These data, collected over the past several decades, provide an important source of information on the origin and evolution of the small bodies in the solar system.  相似文献   

5.
Conclusions During the past three years there have been significant extensions of the solar data available. Over most of the solar spectrum between 1 – 2200 the new or improved observations have led to interesting problems in line identifications. The identifications have in turn led to new methods of determining the physical conditions in the solar atmosphere, eg electron density determinations from the Hei like ion intercombination line to forbidden line ratio (Gabriel and Jordan, 1969b). The majority of the strong lines have now been identified, either by theoretical considerations or from the extensive laboratory data which have recently become available. However, weak lines may also aid the understanding of the chromosphere and corona and work on the identifications of all remaining features observed must continue.  相似文献   

6.
A great number of forest fires take place regularly around the planet. Some of them are systematically observed by sensors on board various space platforms. Like so many countries around the world, Colombia is no stranger to these phenomena. On a local and regional level fires cause environmental catastrophes on a variety of scales, destroying the vegetation, the biodiversity and causing damage to human activities [E. Lòpez, Determination of the conditions of risk and monitoring of forest fires by remote sensing tools and ground observations, in: IV Conference Applications of Science and Space Technology in the Americas and its Benefits for the Civil Society, Cartagena de Indias, Colombia, 2002, www.minrelext.gov.co/ivcea/]. There are presently sensors available to try minimize environmental catastrophes and this report describes how risk conditions are determined and how monitoring is done for forest fires through remote monitoring techniques and land observations made in Colombia by a group of wild land fire fighters and BIRD, a German microsatellite and its flight over Colombia on September 16, 2003.  相似文献   

7.
The early development of Mars is of enormous interest, not just in its own right, but also because it provides unique insights into the earliest history of the Earth, a planet whose origins have been all but obliterated. Mars is not as depleted in moderately volatile elements as are other terrestrial planets. Judging by the data for Martian meteorites it has Rb/Sr 0.07 and K/U 19,000, both of which are roughly twice as high as the values for the Earth. The mantle of Mars is also twice as rich in Fe as the mantle of the Earth, the Martian core being small (20% by mass). This is thought to be because conditions were more oxidizing during core formation. For the same reason a number of elements that are moderately siderophile on Earth such as P, Mn, Cr and W, are more lithophile on Mars. The very different apparent behavior of high field strength (HFS) elements in Martian magmas compared to terrestrial basalts and eucrites may be related to this higher phosphorus content. The highly siderophile element abundance patterns have been interpreted as reflecting strong partitioning during core formation in a magma ocean environment with little if any late veneer. Oxygen isotope data provide evidence for the relative proportions of chondritic components that were accreted to form Mars. However, the amount of volatile element depletion predicted from these models does not match that observed — Mars would be expected to be more depleted in volatiles than the Earth. The easiest way to reconcile these data is for the Earth to have lost a fraction of its moderately volatile elements during late accretionary events, such as giant impacts. This might also explain the non-chondritic Si/Mg ratio of the silicate portion of the Earth. The lower density of Mars is consistent with this interpretation, as are isotopic data. 87Rb-87Sr, 129I-129Xe, 146Sm-142Nd, 182Hf-182W, 187Re-187Os, 235U-207Pb and 238U-206Pb isotopic data for Martian meteorites all provide evidence that Mars accreted rapidly and at an early stage differentiated into atmosphere, mantle and core. Variations in heavy xenon isotopes have proved complicated to interpret in terms of 244Pu decay and timing because of fractionation thought to be caused by hydrodynamic escape. There are, as yet, no resolvable isotopic heterogeneities identified in Martian meteorites resulting from 92Nb decay to 92Zr, consistent with the paucity of perovskite in the martian interior and its probable absence from any Martian magma ocean. Similarly the longer-lived 176Lu-176Hf system also preserves little record of early differentiation. In contrast W isotope data, Ba/W and time-integrated Re/Os ratios of Martian meteorites provide powerful evidence that the mantle retains remarkably early heterogeneities that are vestiges of core metal segregation processes that occurred within the first 20 Myr of the Solar System. Despite this evidence for rapid accretion and differentiation, there is no evidence that Mars grew more quickly than the Earth at an equivalent size. Mars appears to have just stopped growing earlier because it did not undergo late stage (>20 Myr), impacts on the scale of the Moon-forming Giant Impact that affected the Earth.  相似文献   

8.
Until the ULYSSES spacecraft reached the polar regions of the solar wind, the only high-latitude measurements available were from indirect techniques. The most productive observations in regions of the solar wind between 5R and 200R have been the family of radio scattering techniques loosely referred to as Interplanetary Scintillation (IPS) (Coles, 1978). Useful observations can be obtained using a variety of radio sources, for example spacecraft beacons, planetary radar echoes and compact cosmic sources (quasars, active galactic nuclei, pulsars, galactic masers, etc.). However for measurement of the high-latitude solar wind cosmic sources provide the widest coverage and this review will be confined to such observations. IPS observations played a very important role in establishing that polar coronal holes (first observed in soft x-ray emission) were sources of fast solar wind streams which occasionally extend down to the equatorial region and are observed by spacecraft. Here I will review the IPS technique and show the variation of both the velocity and the turbulence level with latitude over the last solar cycle. I will also outline recent work and discuss comparisons that we hope to make between IPS and ULYSSES observations.  相似文献   

9.
We review recent observations by the Yohkoh-SXT in collaboration with other spacecraft and ground-based observatories of coronal loops and prominences. These new results point to problems that SoHO will be able to address. With a unique combination of rapid-cadence digital imaging (32 s full-disk and 2 s partial-frame images), high spatial resolution (2.5 arcsec pixels), high sensitivity (EM 1042 cm–3), a low-scatter mirror, and large dynamic range, SXT can observe a vast range of targets on the Sun. Over the first 21 months of Yohkoh operations, SXT has taken over one million images of the corona and so is building up an invaluable long-term database on the large-scale corona and loop geometry. The most striking thing about the SXT images is the range of loop sizes and shapes. The active regions are a bright tangle of magnetic field lines, surrounded by a network of large-scale quiet-Sun loops stretching over distances in excess of 105 km. The cross-section of most loops seems to be constant. Loops displaying significant increase in the ratio of the footpoint to loop-top diameter () are the exception, not the rule, implying the presence of widespread currents in the corona.All magnetic structures show changes. Time scales range from seconds to months. The question of how these structures are formed, become filled with hot plasma, and are maintained is still open. While we see the propagation of brightenings along the length of active-region loops and in X-ray jets with velocities of several hundred km/s, much higher velocities are seen in the quiet Sun. In XBP flares, for example, velocities of over 1000 km/s are common. Active-region loops seem to be in constant motion, moving slowly outward, carrying plasma with them. During flares, loops often produce localized brightenings at the base and later at the apex of the loop. Quiescent filaments and prominences have been observed regularly. Their coronal manifestation seems to be an extended arcade of loops overlying the filament. Reliable alignment of the ground-based data with the X-ray images make it possible to make a detailed intercomparison of the hot and cold plasma structures over extended periods. Hence we are able to follow the long-term evolution of these structures and see how they become destabilized and erupt.  相似文献   

10.
The tracking and data acquisition systems provide the key link between the remote spacecraft and the scientific experimenter on the ground. The operation of the space experiment takes place through the links of command, telemetry and tracking. The evolution from the early very simple spacecraft missions toward more complex and sophisticated missions has been paralleled by a similar evolution in the tracking and data acquisition systems. The early Minitrack interferometer tracking system still carries the major tracking workload for space missions; however greater tracking accuracy requirements for more recent missions, such as the Orbiting Geophysical Observatory and the Apollo mission, have brought about the development of unified tracking and data acquisition systems which utilize hybrid pseudo-random code/sidetone ranging techniques. The data acquisition has evolved from analog telemetry systems to the present day heavy use of PCM digital telemetry. Likewise the command systems have evolved from early simple on/off command systems into PCM digital command data systems. The trend is toward greater real time control of more complex functions on board the spacecraft. Newer spacecraft are incorporating computer-type systems in the spacecraft which require programming and memory load through the ground command link. The most attractive concept for the next generation network for tracking and data acquisition is a network consisting of synchronous-orbit Tracking and Data Relay Satellites for covering launches and low-orbit earth satellites plus a few selected ground stations for supporting spacecraft in high earth orbit and lunar orbit.  相似文献   

11.
The SNC (Shergotty-Nakhla-Chassigny) meteorites have recorded interactions between martian crustal fluids and the parent igneous rocks. The resultant secondary minerals — which comprise up to 1 vol.% of the meteorites — provide information about the timing and nature of hydrous activity and atmospheric processes on Mars. We suggest that the most plausible models for secondary mineral formation involve the evaporation of low temperature (25 – 150 °C) brines. This is consistent with the simple mineralogy of these assemblages — Fe-Mg-Ca carbonates, anhydrite, gypsum, halite, clays — and the chemical fractionation of Ca-to Mg-rich carbonate in ALH84001 "rosettes". Longer-lived, and higher temperature, hydrothermal systems would have caused more silicate alteration than is seen and probably more complex mineral assemblages. Experimental and phase equilibria data on carbonate compositions similar to those present in the SNCs imply low temperatures of formation with cooling taking place over a short period of time (e.g. days). The ALH84001 carbonate also probably shows the effects of partial vapourisation and dehydration related to an impact event post-dating the initial precipitation. This shock event may have led to the formation of sulphide and some magnetite in the Fe-rich outer parts of the rosettes.Radiometric dating (K-Ar, Rb-Sr) of the secondary mineral assemblages in one of the nakhlites (Lafayette) suggests that they formed between 0 and 670 Myr, and certainly long after the crystallisation of the host igneous rocks. Crystallisation of ALH84001 carbonate took place 0.5 Gyr after the parent rock. These age ranges and the other research on these assemblages suggest that environmental conditions conducive to near-surface liquid water have been present on Mars periodically over the last 1 Gyr. This fluid activity cannot have been continuous over geological time because in that case much more silicate alteration would have taken place in the meteorite parent rocks and the soluble salts would probably not have been preserved.The secondary minerals could have been precipitated from brines with seawater-like composition, high bicarbonate contents and a weakly acidic nature. The co-existence of siderite (Fe-carbonate) and clays in the nakhlites suggests that the pCO2 level in equilibrium with the parent brine may have been 50 mbar or more. The brines could have originated as flood waters which percolated through the top few hundred meters of the crust, releasing cations from the surrounding parent rocks. The high sulphur and chlorine concentrations of the martian soil have most likely resulted from aeolian redistribution of such aqueously-deposited salts and from reaction of the martian surface with volcanic acid volatiles.The volume of carbonates in meteorites provides a minimum crustal abundance and is equivalent to 50–250 mbar of CO2 being trapped in the uppermost 200–1000 m of the martian crust. Large fractionations in 18O between igneous silicate in the meteorites and the secondary minerals (30) require formation of the latter below temperatures at which silicate-carbonate equilibration could have taken place (400°C) and have been taken to suggest low temperatures (e.g. 150°C) of precipitation from a hydrous fluid.  相似文献   

12.
A progress report is given on our current interpretation of the X-ray emission from supernova remnants. Previous results from earlier experiments, the Einstein Observatory in particular, are reviewed and supplemented by the most recent data from the Exosat mission for a selection of remnants (Puppis-A, Cas-A, SN 1006, RCW103, W49B). Major improvements come from using the high energy spectra obtained with Exosat which indicate the presence of a very hot electron component in both young and old thermal remnants. Despite the fact that non-equilibrium ionization has been found in some cases, the spectra of most remnants investigated so far are not well represented by single non-equilibrium models, but require at least two components. An impression of the variety of plasma states which can be found in remnants is obtained from Exosat low energy filter spectroscopy of Puppis-A, which shows temperature variations on scales as small as 1.  相似文献   

13.
An analogy is drawn between the current knowledge on terrestrial snow and ice-cap chemistry and the possible composition of snowfall and ice caps of Mars. Terrestrial snowfall reflects the composition of the Earth's atmosphere. Snow cover further interacts with the atmosphere and is the recipient of aerosol and particulate fall-out. The snow is transformed to firn and ice and the chemical signatures become locked into the perennial ice sheets. The chemical profiles of ice thus constitute environmental records of the Earth's past. By considering the present knowledge on the hydrologie cycle of Mars and the chemistry of the atmosphere, a simple analogous model for the chemical profile of the North polar ice cap is proposed. Three major constituents of the ice are discussed: water ice, dust, and occluded air bubbles. The seasonal fluctuations and interannual variability of these components are examined as possible chemical signatures for the dating of ice, elucidating hydrologie processes, and recording long-term climatic change. The model of the north polar cap in summer consists of water-ice fine-dust layers (30–200 m thick) sandwiched between annual dust layers of variable size distribution and thickness (< 1m– > 66 m). The water ice is subjected to metamorphism and grain growth. The interpretation of the physico-chemical profile could lead to increased knowledge on the recent climatic past (1,000–2,000 years), hydrologic reservoirs, and seasonal cycles in the atmospheric dynamics of the planet.  相似文献   

14.
Le Grand  P. 《Space Science Reviews》2003,108(1-2):225-238
One long-standing difficulty in estimating the large-scale ocean circulation is the inability to observe absolute current velocities. Both conventional hydrographic measurements and altimetric measurements provide observations of currents relative to an unknown velocity at a reference depth in the case of hydrographic data, and relative to mean currents calculated over some averaging period in the case of altimetric data. Space gravity missions together with altimetric observations have the potential to overcome this difficulty by providing absolute estimates of the velocity of surface oceanic currents. The absolute surface velocity estimates will in turn provide the reference level velocities that are necessary to compute absolute velocities at any depth level from hydrographic data. Several studies have been carried out to quantify the improvements expected from ongoing and future space gravity missions. The results of these studies in terms of volume flux estimates (transport of water masses) and heat flux estimates (transport of heat by the ocean) are reviewed in this paper. The studies are based on ocean inverse modeling techniques that derive impact estimates solely from the geoid error budgets of forthcoming space gravity missions. Despite some differences in the assumptions made, the inverse modeling calculations all point to significant improvements in estimates of oceanic fluxes. These improvements, measured in terms of reductions of uncertainties, are expected to be as large as a factor of 2. New developments in autonomous ocean observing systems will complement the developments expected from space gravity missions. The synergies of in situ and satellite observing systems are considered in the conclusion of this paper. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Passive tracking scheme for a single stationary observer   总被引:1,自引:0,他引:1  
While there are many techniques for bearings-only tracking (BOT) in the ocean environment, they do not apply directly to the land situation. Generally, for tactical reasons, the land observer platform is stationary; but, it has two sensors, visible and infrared, for measuring bearings and a laser range finder (LRF) for measuring range. There is a requirement to develop a new BOT data fusion scheme that fuses the two sets of bearing readings, and together with a single LRF measurement, produces a unique track. This paper first develops a parameterized solution for the target speeds, and then heading, prior to the occurrence of the LRF measurement, when the track is unobservable. At, and after the LRF measurement, a BOT, formulated as a least squares (LS) estimator, then produces a unique LS estimate of the target states. Bearing readings from the other sensor serve as instrumental variables in a data fusion setting to eliminate the bias in the BOT estimator. The result is an unbiased and decentralized data fusion scheme. Results from two simulation experiments have corroborated the theoretical development and show also that the scheme is optimal.  相似文献   

16.
The NASA Juno mission includes a six-channel microwave radiometer system (MWR) operating in the 1.3–50 cm wavelength range in order to retrieve abundances of ammonia and water vapor from the microwave signature of Jupiter (see Janssen et al. 2016). In order to plan observations and accurately interpret data from such observations, over 6000 laboratory measurements of the microwave absorption properties of gaseous ammonia, water vapor, and aqueous ammonia solution have been conducted under simulated Jovian conditions using new laboratory systems capable of high-precision measurement under the extreme conditions of the deep atmosphere of Jupiter (up to 100 bars pressure and 505 K temperature). This is one of the most extensive laboratory measurement campaigns ever conducted in support of a microwave remote sensing instrument. New, more precise models for the microwave absorption from these constituents have and are being developed from these measurements. Application of these absorption properties to radiative transfer models for the six wavelengths involved will provide a valuable planning tool for observations, and will also make possible accurate retrievals of the abundance of these constituents during and after observations are conducted.  相似文献   

17.
This paper reviews the present state of knowledge of the abundances and physical state of interstellar atomic and molecular hydrogen. Much new data in this area have been obtained in recent rocket observations. There have also been new developments as a result of ground-based infrared and 21-cm observations, and theoretical research.Rocket observations of the Lyman- interstellar absorption line of atomic hydrogen indicate that, in many directions in the sky, atomic hydrogen is up to a factor of 10 less abundant than previously indicated by 21-cm emission measurements. In the direction of the Orion Nebula, most of the absorbing gas appears to be concentrated in the near vicinity of the nebula and to have a temperature considerably lower than the average of 100 K obtained from 21-cm emission measurements. Molecular hydrogen appears essentially absent from the general interstellar medium, as confirmed by theoretical studies of photodissociation processes. However, ground-based infrared and 21-cm studies indicate that the hydrogen in dark dust clouds is mostly molecular.  相似文献   

18.
Coronal transient phenomena   总被引:1,自引:0,他引:1  
Solar coronal transients, particularly those caused by flares and eruptive prominences, play a major role in the fields of solar-terrestrial physics and astrophysics. In the former field, coronal transients and their associated interplanetary disturbances are responsible for solar and galactic cosmic ray modulations, as well as planetary magnetospheric and ionospheric disturbances. In the latter field, supernovae remnants are scaled-up manifestations of such disturbances; that is they are stellar, rather than solar, coronal transients. Study of the more accessible solar transients is proving invaluable in both fields and is, therefore, selected for attention in this paper.A series of coronal transient observations is discussed in the spirit of a representative overview following some introductory remarks on the background solar wind. One of these observations is chosen because its interplanetary signature-the shock wave-was detected by two spacecraft at different heliocentric radii. Other cases are chosen because of the extended observations of embedded eruptive prominences. Progress is also being made in the interdisciplinary areas of optical imagery complemented with radio astronomical techniques.Finally, several recent theoretical models and MHD computer simulation studies are summarized. It is suggested that further comparison of specific events with such models promises a rich harvest of physical understanding of the origin, structure and interplanetary progeny of coronal transients.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.  相似文献   

19.
One of the great challenges in climate research is to investigate the principal mechanisms that control global climatic changes and an effective way to learn more about it, is the reconstruction of past climate changes. The most important sources of information about such changes and the associated composition of the atmosphere are the two large ice caps of Greenland and Antarctica. Analysis of ice cores is the most powerful means we have to determine how climate has changed over the last few climatic cycles, and to relate this to changes in atmospheric composition, in particular to concentrations of the principal greenhouse gases – CO2, CH4 and N2O (carbon dioxide, methane, and nitrous oxide).Transitions from cold ice age climates to warmer interstadials have always been accompanied by an increase of the atmospheric concentration of the three principal greenhouse gases. This increase has been, at least for CO2, vital for the ending of glacial epochs. A highly simplified course of events for the past four transitions would then be as follows: first, changing orbital parameters initiated the end of the glacial epoch; second, an increase in greenhouse gases then amplified the weak orbital signal; third, in the second half of the transition, warming was further amplified by decreasing albedo, caused by melting of the large ice sheets in the Northern Hemisphere going parallel with a change of the ocean circulation.The isotopic records of Greenland ice cores show evidence for fast and drastic climatic changes during the last glacial epoch. Possible causes and mechanisms of such changes and their significance as global climatic events are discussed here. Ice core results also enable the reaction of the environment to past global changes to be investigated.It will also be discussed how reliable stable isotope records are as a local temperature proxy and how representative paleoclimatic results from Greenland and Antarctica are in relation to global climate.  相似文献   

20.
Reports of unpredicted lightning and its spatial association with mountains of possible volcanic origin are provocative features of the 1980's literature on Venus. These reports are based upon interpretation of low-frequency 100 Hz electric field noise observed from the Pioneer Venus Orbiter during 1978–1986. These speculations have been repeatedly challenged in the literature. Even though explosive volcanism, like lightning, is discounted in the literature, researchers have been prompted to believe in present-day eruptions by the suggestion that volcanic plumes might stimulate the otherwise unexpected lightning. Recent introductions of a distinct set of higher-frequency electric field noise has resulted in further claims for lightning, but these results, like those derived from the 100 Hz data are discounted be several independent studies. Commenting on the large body of 100 Hz data, Russell (1991) abandons earlier reports of the planetographic clustering of this noise, and states that active volcanoes are not the source of the Venus lightning. This welcome acknowledgement leaves unresolved problems. First, this brief comment is quite insufficient to correct the widespread and flawed perception that Venus is currently experiencing widespread lightning, stimulated by volcanic disturbances. Second, this admission leaves unexplained the origin of the voluminous 100 Hz data set. The foregoing problems, combined with negative results of recent independent studies, indicate strongly that the Pioneer Venus results provide no reliable evidence of either lightning or volcanism at Venus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号