共查询到5条相似文献,搜索用时 48 毫秒
1.
2.
机载惰化用中空纤维膜组件具有分离效率高、安全稳定、结构紧凑等优点,是目前较为经济高效的飞机燃油箱惰化设备。采用计算流体力学(CFD)方法对某中空纤维膜组件壳程气体流动进行数值模拟,通过更改膜丝束间距、膜丝束入口速度、膜丝束流量、膜丝束排布方式及飞行高度,得到了不同工况下的组件轴向各截面的气体流动分布,并提出无量纲参数截面平均速度比来描述气体流动分布规律。仿真结果表明:在保持入口气体流动速度一定时,平均速度比值随着膜丝束间距的减小先减小后增大,在膜丝束间距为1.5倍膜丝半径时达到最小值, 在保持入口流量一定时,壳程气体流动有着相同的规律;在保持膜丝束填充数量不变时,均匀排布比不均匀排布的平均速度比值更小;保持膜丝束间距不变时,入口速度对平均速度比值影响不大;飞行高度对组件壳程气体分布的影响作用主要体现在膜组件内壁处。 相似文献
3.
以某直升机机载中空纤维膜惰化系统为研究对象,设计了电控阀控温和变频风扇控温2种系统。基于AMESim平台以分离膜数学模型计算数据为基础,搭建机载惰化系统,在飞行包线下,研究了2种温控模式的控温效果、不同飞行阶段的惰化系统性能变化及关键参数对其影响。计算结果表明:电控阀控温系统在整个飞行过程均能将引气温度维持在目标温度90℃,在起飞之后富氮气体(NEA)氮体积分数全程维持在91.5%~96.4%之间,所需引气流量为40~243 kg/h,空载燃油箱气相空间氧体积分数可在180 s内降至9%,且保持全程低于9%;变频风扇控温系统在满足爬升、加速、俯冲高温阶段控温惰化要求的选型前提下,在低速、高速巡航阶段,引气被过度冷却至0℃左右,虽然所需引气流量低至26 kg/h,但NEA氮体积分数大幅下降至81%,燃油箱气相空间氧体积分数高达18%,在巡航阶段,飞行速度越大,引气温降越大,且巡航高度越低,为满足控温效果所需的最低巡航速度越低。 相似文献
4.