共查询到6条相似文献,搜索用时 31 毫秒
1.
Henryk Dobslaw Robert Dill 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(4):1047-1054
Effective Angular Momentum (EAM) functions obtained from global numerical simulations of atmosphere, ocean, and land surface dynamics are routinely processed by the Earth System Modelling group at Deutsches GeoForschungsZentrum. EAM functions are available since January 1976 with up to 3?h temporal resolution. Additionally, 6?days-long EAM forecasts are routinely published every day. Based on hindcast experiments with 305 individual predictions distributed over 15?months, we demonstrate that EAM forecasts improve the prediction accuracy of the Earth Orientation Parameters at all forecast horizons between 1 and 6?days. At day 6, prediction accuracy improves down to 1.76 mas for the terrestrial pole offset, and 2.6 mas for UT1, which correspond to an accuracy increase of about 41% over predictions published in Bulletin A by the International Earth Rotation and Reference System Service. 相似文献
2.
Alexandre Belli Nikita P. Zelensky Frank G. Lemoine Douglas S. Chinn 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(3):930-944
Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) is a tracking technique based on a one-way ground to space Doppler link. For Low Earth Orbit (LEO) satellites, DORIS shows a robust capability in terms of data coverage and availability, due to a wide and well-distributed ground network, where data are made available by the International Doris Service (IDS). However, systematic errors remain in the DORIS data, such as instabilities of the on-board clock due to radiation encountered in space, which limit the accurate determination of station positions.The DORIS on-board clock frequency stability is degraded by the increased radiation found in the region of the South Atlantic Anomaly (SAA) and has been shown to degrade station position estimation. This paper introduces a new model correction to the DORIS data for the frequency of the Jason-2 Ultra Stable Oscillator (USO), derived from the Time Transfer by Laser Link (T2L2) experiment (Belli and Exertier, 2018). We show that a multi-satellite DORIS solution including this T2L2-corrected data applied to the frequency modelling for The DORIS data, improves the estimation of station coordinates. We show the tie residuals with respect to collocated GPS stations are improved by several millimeters. We also demonstrate that the 117-day (Jason-2) draconitic signal in the geophysical parameters is reduced, implying that the origin of this signal is not just solar radiation pressure mis-modeling, but also radiation-induced clock perturbations on the Jason-2 DORIS Ultra-Stable-Oscillator (USO). Finally we demonstrate through comparisons with the International Earth Rotations and Reference Systems Service (IERS) C04 series for Earth Orientation Parameters (EOP), that the estimation of EOP is improved in both a Jason-2 DORIS-only and a multi-satellite DORIS solution for EOP. 相似文献
3.
针对单频接收机的电离层延迟改正问题, 提出了一种基于系数择优的低阶球谐电离层延迟改正模型. 按照电离层延迟改正模型参数择优问题的描述, 明确参数优化的目标和约束条件, 根据参数选择可编码的特点, 提出了利用遗传算法进行参数择优的方法及步骤. 以欧洲定轨中心(CODE)提供的电离层数据作为参考标准, 对参数择优模型、 低阶球谐模型和Klobuchar模型模拟的区域电离层VTEC精度进行了比较分析. 结果表明, 较之相同系数个数的低阶球谐模型, 参数择优模型精度平均改进了1~2TECU, 而且比Klobuchar模型及低阶球谐模型能更好地反映电离层的周日变化及纬度变化特征. 相似文献
4.
基于电推力器进行南北位置保持的一种地球同步轨道注入参数方法 《空间控制技术与应用》2017,43(6):8-12
摘要: 电推力器在静止轨道卫星上应用越来越广泛,特别是基于电推力器进行南北位置保持,可以有效节省推进剂.提出改进的GPS星历参数解析算法,在此基础上考虑包含电推力模型在内多摄动项模型进行地面精密轨道计算,采用微分修正法,提出一种地球同步轨道注入参数方法,该方法可应用于星上自主完成基于电推力器的南北位置保持.仿真算例表明使用该方法得到的轨道注入参数,卫星能够在保证姿态确定精度的同时,完成南北位置保持任务. 相似文献
5.
Qing Zhao Wang Gao Chengfa Gao Shuguo Pan Xing Yang Jun Wang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(3):1124-1142
The main challenge in real-time precise point positioning (PPP) is that the data outages or large time lags in receiving precise orbit and clock corrections greatly degrade the continuity and real-time performance of PPP positioning. To solve this problem, instead of directly predicting orbit and clock corrections in previous researches, this paper presents an alternative approach of generating combined corrections including orbit error, satellite clock and receiver-related error with broadcast ephemeris. Using ambiguities and satellite fractional-cycle biases (FCBs) of previous epoch and the short-term predicted tropospheric delay through linear extrapolation model (LEM), combined corrections at current epoch are retrieved and weighted with multiple reference stations, and further broadcast to user for continuous enhanced positioning during outages of orbit and clock corrections. To validate the proposed method, two reference station network with different inter-station distance from National Geodetic Survey (NGS) network are used for experiments with six different time lags (i.e., 5 s, 10 s, 15 s, 30 s, 45 s and 60 s), and one set of data collected by unmanned aerial vehicle (UAV) is also used. The performance of LEM is investigated, and the troposphere prediction accuracy of low elevation (e.g., 10–20degrees) satellites has been improved by 44.1% to 79.0%. The average accuracy of combined corrections before and after LEM is used is improved by 12.5% to 77.3%. Without LEM, an accuracy of 2–3 cm can be maintained only in case of small time lags, while the accuracies with LEM are all better than 2 cm in case of different time lags. The performance of simulated kinematic PPP at user end is assessed in terms of positioning accuracy and epoch fix rate. In case of different time lags, after LEM is used, the average accuracy in horizontal direction is better than 3 cm, and the accuracy in up direction is better than 5 cm. At the same time, the epoch fix rate has also increased to varying degrees. The results of the UAV data show that in real kinematic environment, the proposed method can still maintain a positioning accuracy of several centimeters in case of 20 s time lag. 相似文献
6.
月地返回轨道存在各种摄动误差,终端约束复杂,有必要对其进行中途修正研究。显式制导法通过二体轨道与精确轨道之间的差别进行多次迭代求解给定时刻所需的修正速度。文章利用显式制导法,采用月球段及地球段分段进行中途修正的策略,给出了基于分段落点预报显式制导的月地返回轨道中途修正方案。该方案无需计算雅克比矩阵,算法简单、计算快速、实用性强,能满足再入点参数要求。算例仿真与蒙特卡洛仿真验证了该方案的适用性。 相似文献