首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
作为多普勒跟踪测量用于时空引力检验的尝试,在多普勒建模过程中加入了对于局部洛仑兹不变性(LLI)以及局部位置不变性(LPI)的检验参数。LLI/LPI是包括广义相对论在内的任何度规引力理论的基石。通过迭代求解多普勒建模过程中所需的光行时解,证明了只有在单程以及三程多普勒测量中可以检验LLI和LPI。鉴于该种测量手段无需额外载荷以及我国测控精度,可以尝试通过单/三程多普勒测量来检验LLI和LPI的科学目标。  相似文献   

2.
位于地月平动点的探测器因为较差的观测几何,需要地基USB/UXB与天文VLBI长时间的联合跟踪数据获取稳定精确的轨道。提出了利用中国深空网双站共视跟踪平动点探测器,获取双程、三程测距及VLBI测量数据,解算探测器精确轨道的模式。以"鹊桥"卫星为分析对象,首先评估中国深空网对"鹊桥"的跟踪能力。然后分析不同观测组合模式下的定轨计算精度。结果表明:双站共视约束下,深空站每天对"鹊桥"跟踪弧长大于5 h;使用长于6 h的双站跟踪数据进行定轨,系统差的解算更有利于轨道精度提升;跟踪时长超过2天时,必须在轨道解算的同时估计光压系数,并有望实现优于百米的轨道精度。  相似文献   

3.
应用大型望远镜跟踪、观测人造卫星,精确地为其定位完全是可能的。大型望远镜不仅可用作观测天体,而且也可用在观测卫星上。近来日本邮政省通信综合研究所(CRL)研制了卫星跟踪光学装置,用它进行了低地球轨道运行卫星乃至静止轨道卫星的光学跟踪,即开展卫星精确定位研究,其具体内容如下:一、光学跟踪卫星通常情况下,采用无线电跟踪卫星,即接收来自于卫星发射的电波,在得出卫星方向的同时,利用多普勒效应求得速度。在跟踪数据的基础上求得卫星轨道参数,从而做出卫星轨道预报。  相似文献   

4.
TEC计算方法探讨和赤道异常北驼峰时空特征测量初析   总被引:1,自引:0,他引:1  
本文探讨了应用最小曲率原理由单站微分多普勒频移数据计算TEC时所遇到的问题和解决办法。处理了用MX1502大地定位接收机于1989年8月和9月先后在陕西临潼和北京观测的NNSS卫星多普勒频移数据,得到了TEC时空分布曲线。分析这些曲线,得到了TEC赤道异常北驼峰时空特征在太阳活动高年(尤其是8月中旬太阳特大质子事件中)的某些结果。  相似文献   

5.
提出了一种基于空间坐标转换,利用卫星位置、速度参数精确估算星载SAR(Synthetic Aperture Radar)全观测带多普勒参数的方法.利用卫星速度、位置,通过星载SAR空间几何模型和坐标转换关系,建立SAR图像中斜距同卫星下视角之间的四次方程,解出下视角并进一步计算出该斜距处的多普勒参数值.仿真结果表明,该方法在无卫星位置、速度误差情况下估算精度达到0.02Hz(多普勒中心频率)和2×10-4Hz/s(多普勒调频率);存在卫星位置测量误差(300m)以及速度测量误差(0.3m/s)的情况下,估算精度达到0.8Hz(多普勒中心频率)和0.07Hz/s(多普勒调频率).该方法适用于单星SAR以及分布式SAR高精度多普勒参数的估算.   相似文献   

6.
本文讨论了总辐照度、大气透过率和程辐射亮度对遥感数据的影响。导出了不同高度的程辐射亮度表达式。给出了三个不同地区上述三参数在可见和近红外光谱区不同波段的观测结果。用相应的大气模式计算了不同高度的大气透过率及程辐射亮度。预计了0.4—0.5,0.5—0.6,0.6—0.7,0.7—1.1微米波段在不同大气条件和不同高度遥感器接收到的总辐射亮度、目标物本征辐射亮度和程辐射亮度。给出了总辐射亮度随程辐射亮度和目标物反射率的变化关系。分析了这些数据与大气条件的关系。  相似文献   

7.
为支持我国首次火星探测任务取得圆满成功,宇航动力学国家重点实验室将全自主开发的精密定轨平台系统,应用于环火星轨道确定中。为满足多对象、多弧段、多中心天体的定轨需求,平台系统设计了卫星结构、测站结构、观测结构和天体结构4大基础结构,并在4大基础结构之上,设计了灵活的弧段结构和估计结构。为验证平台系统是否具备环火星定轨能力,平台系统首先使用2020年上半年跟踪火星快车实验的数据对测量模型进行了检核,得到了理论测距和实测测距偏差(11m~21m);其次,使用2009年实测双程测速和三程测速数据定轨,单独使用双程测速定轨,轨道与欧空局精密星历位置偏差最大不超过100m,测速残差的均方根(Root Mean Square, RMS)为0.0137(cm/s)。使用三程测速定轨,位置偏差不超过250m,三程测速RMS为0.0119(cm/s);最后,使用两天三站测距仿真进行了自定轨验证,初轨和随机差都基本收敛回仿真初值。结果显示,宇航动力学国家重点实验室精密定轨系统能够满足我国首次火星探测任务的基本需求。  相似文献   

8.
□□"地球观测系统"(EOS)是美国航空航天局(NASA)制定的一项综合性地球观测计划.它以整个地球为视点,对陆地、海洋、大气层、冰以及生物之间的相互作用进行系统化的综合观测.整个系统由卫星发射任务、数据与信息系统和科学研究计划等3部分构成,时间跨度近20年,直至2015年.EOS计划的第1颗卫星在1997年8月发射,截至2005年11月7日共发射了20颗卫星(含失败1颗),预计今后5年内还将陆续发射7颗卫星.  相似文献   

9.
□□为建立独立完善的航天体系,提高对航天器的轨道覆盖和测控能力,解决载人航天的实时通信,以及增强中低轨道对地观测卫星的应用效果及效率,欧空局和日本紧随美国和俄罗斯,积极发展自己的跟踪与数据中继卫星系统。经过10多年的努力,日本于2002年9月13日发射了它的第1颗“数据中继试验卫星”(DRTS-1),为其先进地球观测卫星-2(ADEOS-2)提供数据中继服务。而欧空局虽然早于日本在2001年7月12日发射了“阿蒂米斯”(Artemis)数据中继卫星,但却因阿里安-5火箭上面级发生故障将其置入了一条错误的椭圆轨道。经过欧空局地面控制中心18个月的挽…  相似文献   

10.
海南地区电离层不规则体纬向漂移速度的观测和研究   总被引:3,自引:2,他引:1  
根据中国海南富克(19.3°N,109.1°E)三点GPS观测系统2007年3月至11月的观测数据,利用互相关方法分析了三站闪烁信号的时间延迟,得出了不规则体纬向漂移的基本特征.在中国海南地区,闪烁主要发生在春秋季节,夜间不规则体的纬向漂移速度以东向为主,大小在50~150 m/s之间;平均东向漂移速度随时间呈下降趋势.另外,在闪烁刚发生时,不规则体纬向速度起伏较大,这可能与不规则体的随机起伏以及等离子体泡产生时垂直速度较大有关.中国海南地区不规则体纬向漂移速度的这些基本特征与低纬其他地区的测量结果较为一致.  相似文献   

11.
在小型天线和低发射功率条件下,保证电离层测高仪观测数据质量和提高观测速度一直是电离层垂测的技术难点.针对这一问题,基于新近发展的高速数字芯片和射频器件,采用窄带跟踪滤波、脉冲压缩、编码复用和天线均衡匹配等技术,设计和研制一种敏捷数字电离层测高仪.该系统采用数米高的小型收发天线和便携式主机系统,配置任意频率扫描方式频高图、高分辨率多普勒频高图和斜向探测等多种工作模式,具有可流动观测布站、系统参数灵活捷变及适合快速电离层扰动探测等能力.敏捷数字电离层测高仪为组网观测获得大范围电离层时空变化和电离层快速扰动及传播提供了一种有效的探测手段.   相似文献   

12.
We performed an initial analysis of the pseudorange data of the GIOVE-B satellite, one of the two experimental Galileo satellites currently in operation, for time transfer.1 For this specific aim, software was developed to process the GIOVE-B raw pseudoranges and broadcast navigation messages collected by the Galileo Experimental Sensor Stations (GESS) tracking network, yielding station clock phase errors with respect to the Experimental Galileo System Time (EGST). The software also allows processing the Global Positioning System (GPS) P1 and P2 pseudorange data with broadcast navigation message collected at the same stations to obtain the station clock phase errors with respect to the GPS system time (GPST). Differencing these solutions between stations provides two independent means of GNSS time transfer. We compared these time transfer results with Precise Point Positioning (PPP) method applied to GPS data in combined carrier-phase and pseudorange mode as well as in pseudorange-only mode to show their relative merits. The PPP solutions in combined carrier-phase and pseudorange mode showed the least instability of the methods tested herein at all scales, at few parts in 1015 at 1 day for the stations processed, following a tau−½ interval dependency. Conversely, the PPP solutions in pseudorange-only mode are an order of magnitude worst (few parts in 1014 at 1 day for the stations processed) following a tau−1 power-law, but slightly better than the single-satellite raw GPS time transfer solutions obtained using the developed software, since the PPP least-squares solution effectively averages the pseudorange noise. The pseudorange noise levels estimated from PPP pseudorange residuals and from clock solution comparisons are largely consistent, providing a validation of our software operation. The raw GIOVE-B time transfer, as implemented in this work, proves to be slightly better than single-satellite raw GPS satellite time transfer, at least in the medium term. However, one of the processed stations shows a combined GPS P1 and P2 pseudorange noise level at 2 m, a factor 2 worst than usually seen for geodetic receivers, so the GPS time transfer results may not be at their best for the cases processed. Over the short term, the GPS single-satellite time transfer instability outperforms the GIOVE-B by an order of magnitude at 1 s interval, which would be due to the different characteristics of the tracking loop filters for GPS P1 and P2 on one hand and the GIOVE-B signals on the other. Even at this preliminary stage and using an experimental satellite system, results show that the GIOVE-B (and hence Galileo) signals offer interesting perspectives for high precision time transfer between metrological laboratories.  相似文献   

13.
Due to the differences of ionospheric modeling methods and selected tracking stations, the accuracy and consistency of Global Ionospheric Maps (GIMs) released by Ionosphere Associate Analysis Centers (IAACs) are different. In this study, we evaluate and analyze in detail the accuracy and consistency of GIMs final products provided by six IAACs from three different aspects. Firstly, the comparison of these GIMs shows that the mean bias (MEAN) is related to the modeling methods of various IAACs. The variation trend of the standard deviation (STD) is consistent with the solar activities, and accompanied by certain seasonal and annual periodic variations. The MEAN between IGS and each center is about −1.3 to 1.0 TECU, and the STD is about 1.4–2.5 TECU. Secondly, the validation with GPS TEC shows that the STD of CODE is the smallest at various latitudes, and the STD is about 0.7–4.5 TECU. Thirdly, The validation with the Jason2 VTEC shows that the STD between Jason2 and IAACs is about 4.4–5.2 TECU. In addition, the STD between Jason2 and six GIMs in the areas with more tracking stations is better than that of the regions with fewer tracking stations in different latitude regions. Regardless of whether the tracking stations are more or less, the MEAN and STD in high solar activity are larger than in low solar activity.  相似文献   

14.
Since 1960s, the gravitational potential of the Moon has been extensively studied from Doppler tracking data between a ground station and spacecraft orbiting in front of the Moon (e. g., Lorell and Sjogren, 1968; Bills and Ferrari, 1980; Konopliv et al., 1993; Lemoine et al., 1997). Because direct radio communication is interrupted while spacecraft is orbiting behind the Moon, however, the coverage of tracking data has been limited mostly to the nearside of the Moon so far. In order to compensate for such lack of tracking data, we propose satellite-to-satellite Doppler measurement by using a relay subsatellite in Japanese mission to the Moon in 2003. A complete coverage of Doppler tracking from an orbiter at sufficiently low altitude will significantly improve lunar gravity model and will contribute for future geophysical study of interior and tectonics on the Moon. Further, we propose differential VLBI experiment between the subsatellite and a propulsion module landed on the surface of the Moon. The differential VLBI is about 10 times more accurate than conventional Doppler measurement for long-wavelength gravity field. Besides, differential VLBI is sensitive to the displacement perpendicular to the line of sight. Thus the VLBI experiment provides precise estimates of the lunar gravity potential at low degree. The last proposal for selenodetic experiments is a laser altimeter. Global topography model has been already developed from the analysis of Clementine LIDAR data (Zuber et al., 1994), but it is suggested that the model includes appreciable anisotropy between NS and E-W directions due to highly eccentric orbit of Clementine spacecraft (Bills and Lemoine, 1995). The laser altimeter experiment from an orbiter in nearly circular orbit will provide a new reference for the isotropic lunar topography model.  相似文献   

15.
The present paper has used a comprehensive approach to study atmosphere pollution sources including the study of vertical distribution characteristics, the epicenters of occurrence and transport of atmospheric aerosol in North-West China under intensive dust storm registered in all cities of the region in April 2014. To achieve this goal, the remote sensing data using Moderate Resolution Imaging Spectroradiometer satellite (MODIS) as well as model-simulated data, were used, which facilitate tracking the sources, routes, and spatial extent of dust storms. The results of the study have shown strong territory pollution with aerosol during sandstorm. According to ground-based air quality monitoring stations data, concentrations of PM10 and PM2.5 exceeded 400?μg/m3 and 150?μg/m3, respectively, the ratio PM2.5/PM10 being within the range of 0.123–0.661. According to MODIS/Terra Collection 6 Level-2 aerosol products data and the Deep Blue algorithm data, the aerosol optical depth (AOD) at 550?nm in the pollution epicenter was within 0.75–1. The vertical distribution of aerosols indicates that the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) 532?nm total attenuates backscatter coefficient ranges from 0.01 to 0.0001?km?1?×?sr?1 with the distribution of the main types of aerosols in the troposphere of the region within 0–12.5?km, where the most severe aerosol contamination is observed in the lower troposphere (at 3–6?km). According to satellite sounding and model-simulated data, the sources of pollution are the deserted regions of Northern and Northwestern China.  相似文献   

16.
Lunar gravimetry mission in the Japanese lunar exploration project SELENE (Selenological and Engineering Explorer) is characterized by inter-satellite tracking by means of a relay satellite in a high eccentric orbit, combined with differential Very-Long-Baseline-Interferometry (ΔVLBI) and conventional 2-way Doppler tracking. ΔVLBI provides information on the satellite position and velocity complementary to conventional range and range rate measurement, and allows us to measure lunar gravitational accelerations in all the three components. In this article, ΔVLBI and 2-way Doppler numerical simulation results are compared to those obtained from 2-way Doppler observations only, so that we can evaluate the contribution of ΔVLBI to the SELENE lunar gravimetry mission.  相似文献   

17.
It is well known that tropical cyclones can cause upwelling, decrease of sea surface temperature, increase of chlorophyll-a (Chl-a) concentration and enhancement of primary production. But little is known about the response of dissolved oxygen (DO) concentration to a typhoon in the open ocean. This paper investigates the impact of a typhoon on DO concentration and related ecological parameters using in situ and remote sensing data. The in situ data were collected 1 week after the passage of the super-typhoon Nanmadol in the northern South China Sea in 2011. An increase in DO concentration, accompanied by a decrease in water temperature and an increase in salinity and Chl-a concentration, was measured at sampling stations close to the typhoon track. At these stations, maximum DO concentration was found at a depth of around 5 m and maximum Chl-a concentration at depths between 50 and 75 m. The layer of high DO concentration extends from the surface to a depth of 35 m and the concentrations stay almost constant down to this depth. Due to the passage of the typhoon, also a large sea level anomaly (21.6 cm) and a high value of Ekman pumping velocity (4.0 × 10−4 m s−1) are observed, indicating upwelling phenomenon. At the same time, also intrusion of Kuroshio waters in the form of a loop current into the South China Sea (SCS) was observed. We attribute the increase of DO concentration after the passage of the typhoon to three effects: (1) entrainment of oxygen from the air into the upper water layer and strong vertical mixing of the water body due to the typhoon winds, (2) upwelling of cold nutrient-rich water which stimulates photosynthesis of phytoplankton and thus the generation of oxygen, which also increases the DO concentration due to cold water since the solubility of oxygen increase with decreasing water temperature, and, possibly, (3) transport of DO enriched waters from the Western Pacific to the SCS via the intrusion of Kuroshio waters.  相似文献   

18.
In this paper, we present and discuss the response of the ionospheric F-region in the American sector during the intense geomagnetic storm which occurred on 24–25 October 2011. In this investigation ionospheric sounding data obtained of 23, 24, 25, and 26 October 2011 at Puerto Rico (United States), Jicamarca (Peru), Palmas, São José dos Campos (Brazil), and Port Stanley, are presented. Also, the GPS observations obtained at 12 stations in the equatorial, low-, mid- and high-mid-latitude regions in the American sector are presented. During the fast decrease of Dst (about ∼54 nT/h between 23:00 and 01:00 UT) on the night of 24–25 October (main phase), there is a prompt penetration of electric field of magnetospheric origin resulting an unusual uplifting of the F region at equatorial stations. On the night of 24–25 October 2011 (recovery phase) equatorial, low- and mid-latitude stations show h′F variations much larger than the average variations possibly associated with traveling ionospheric disturbances (TIDs) caused by Joule heating at high latitudes. The foF2 variations at mid-latitude stations and the GPS-VTEC observations at mid- and low-latitude stations show a positive ionospheric storm on the night of 24–25 October, possibly due to changes in the large-scale wind circulation. The foF2 observations at mid-latitude station and the GPS-VTEC observations at mid- and high-mid-latitude stations show a negative ionospheric storm on the night of 24–25 October, probably associated with an increase in the density of molecular nitrogen. During the daytime on 25 October, the variations in foF2 at mid-latitude stations show large negative ionospheric storm, possibly due to changes in the O/N2 ratio. On the night of 24–25, ionospheric plasma bubbles (equatorial irregularities that extended to the low- and mid-latitude regions) are observed at equatorial, low- and mid-latitude stations. Also, on the night of 25–26, ionospheric plasma bubbles are observed at equatorial and low-latitude regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号