首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
附加深空机动的借力飞行全局优化   总被引:1,自引:0,他引:1  
借力飞行轨道设计是一个多变量强约束的非线性优化问题, 初始方案通常采用不需要初值猜测的全局优化算法进行优化, 但是借力点处的C3匹配原则等较强的约束条件极大影响了全局算法的收敛性能. 针对这一问题, 研究了附加深空机动的借力飞行模型, 在借力点处引入B平面和辅助转角, 推导了离开超越速度的解析表达式, 通过求解Lambert问题和轨道递推得到日心转移段的深空机动脉冲. 利用微分进化算法对问题进行优化, 结合木星探测算例, 对VEE (Venus-Earth-Earth), VEME (Venus-Earth-Mars-Earth)和VEVE (Venus-Earth-Venus-Earth)三种深空机动借力飞行方案进行优化, 给出了优化结果.   相似文献   

2.
针对太阳高纬度探测器轨道设计任务要求, 研究了基于多目标遗传算法的小推力借力飞行轨道设计方法. 基于圆锥曲线拼接假设, 将探测器轨道分为小推力日心转移轨道段和木星借力飞行轨道段两部分. 在日心转移轨道段, 选择燃料最省为优化目标, 采用标称轨道法设计小推力的推力控制率. 在借力飞行轨道段, 选择借力后日心轨道倾角为优化目标, 对借力飞行的关键参数进行分析. 采用多目标遗传算法对该多目标进行了优化. 结果表明, 多目标遗传算法可以有效地解决轨道设计中的多目标优化问题. 优化得到的小推力控制率不仅可以节省发射能量, 还可以保证借力飞行后探测器能够进入太阳高纬度探测轨道.   相似文献   

3.
根据推进方式和是否采用金星借力,火星转移轨道分为大推力直接转移轨道、大推力金星借力转移轨道、小推力直接转移轨道和小推力金星借力转移轨道4类。传统的轨道设计方法只是针对某一类特定的转移方案进行轨道优化,而并未针对不同的转移方案进行详细对比分析。文章以2020/2022年发射窗口为例,针对4类基本火星转移轨道进行研究。首先,基于不同轨道初始设计方法,对4类轨道进行了初始设计,得到了每类转移方案的能量最优转移轨道。然后,基于设计结果和能耗对4类转移方案进行了横向对比分析,得到了不同策略下的转移轨道的特性。基于小推力的火星探测任务轨道对发射能量要求低;大推力直接转移和借力金星的发射窗口交替分布,可以互为备份;基于小推力推进的探测器采用金星借力转移策略相比直接转移能够减少10%的能耗,优势十分明显。  相似文献   

4.
摘要: 随着电推进器及小推力转移变轨的研究逐渐深入,在深空探测领域应用电推力器是必然的发展趋势.文章基于以月球中继卫星的运行轨道地月L2点Halo轨道为目标轨道的轨道转移任务,采用Lyapunov最优反馈控制方法,计算单一轨道根数的局部最优控制率,通过遗传算法调整五个轨道根数的权重,得到时间最优的月球中继卫星小推力轨道转移方案,具有工程应用意义.  相似文献   

5.
首先在二体意义下采用粒子群优化算法(PSO)求解Lambert问题,确定发射窗口和二体地火转移轨道。使用圆锥曲线拼接法设计地心停泊轨道、逃逸轨道,并作为轨道精确设计的初值,以建立在火星的B平面参数和地火转移时间为约束,在精确动力学模型下进行微分迭代修正,最终得到满足约束的精确轨道。将设计轨道在STK软件中仿真,结果吻合。  相似文献   

6.
针对太阳系远深距离的探测将是人类下一阶段深空探测活动的主要目标。这一目标的实现依赖于探测器连续推进动力技术的突破。从描述连续常值推力下太空飞行的施图林格解出发,对其中反映的深远空飞行任务有效载荷比、任务时间、飞行距离等关键参数与发动机性能之间的关系进行了深入分析。给出了在特定任务时长、特定飞行距离要求下发动机比冲、功率需要满足的条件及其对有效载荷比、最终飞行速度等指标的影响。此外,基于二体轨道动力学对太阳系行星探测的大椭圆转移轨道和转移能量进行了推导,并对连续推力的太阳帆任务方案涉及的关键技术指标做了理论性的计算。这些结论是对深空探测连续推力方案基础理论的归纳,可以为我国未来开展深远空探测活动提供重要的启发和指导。  相似文献   

7.
载人小行星探测任务总体方案研究   总被引:1,自引:1,他引:0  
设计了在近地轨道组装具有分组单元结构的载人深空飞船,包括核热推进单元、燃料储箱与供给单元、主动防辐射单元、人工重力单元、深空居住舱与多任务乘员舱等,给出了各个单元的尺寸与质量参数,并对主要单元的具体组成、功能和技术特点进行了分析。在此基础上,本文以编号4660的Nereus小行星为探测目标,设计了两脉冲转移初始轨道,并进行了轨道优化,得到了发射窗口和最优转移轨道。仿真结果表明,给出的最优两脉冲转移轨道单次施加脉冲在5km/s以内,单程转移时间在160d以内,能够满足未来能量较小的载人小行星探测任务。  相似文献   

8.
月地转移轨道快速设计方法   总被引:1,自引:1,他引:0  
月地转移轨道设计一般分为初步轨道设计和精确轨道设计.其中,初步轨道设计的准确性是确保后续精确轨道设计收敛的关键.提出了一种基于Lambert算法的月地转移轨道快速设计方法.以出月球影响球的时刻、位置和速度为中间变量,将轨道分为地心段和月心段分别进行计算.将探测器飞出月球影响球至指定再入点的地心段轨道简化为一个Lambert问题进行求解,提出了通过牛顿迭代法求解月地转移轨道Lambert问题的方法,避免了Lambert问题求解时大量的超几何函数和级数计算,提高了计算效率.在月心段轨道的快速计算中,提出了根据探测器出影响球速度矢量、月球停泊轨道倾角和近月点高度计算月心双曲线轨道根数的新方法.通过迭代计算,使得两段轨道在月球影响球处的位置和速度连续,从而获得一条完整的满足两端约束的双二体月地转移轨道.该方法计算速度快,精度相对较高.计算结果可以作为后续精确轨道设计的初值.   相似文献   

9.
能量最优与燃料最优Lambert交会问题   总被引:1,自引:0,他引:1  
Lambert双脉冲交会问题是航天工程中轨道转移和在轨交会等领域的重要问题,而能量最优和燃料最优Lambert交会问题是针对典型应用背景和工程需求衍生的一类Lambert优化问题。针对能量最优与燃料最优Lambert双脉冲交会问题提出一种基于矢量形式的解析计算方法,给出能量最优和燃料最优Lambert交会问题的矢量形式解析解,同时对2种最优交会问题求解的性质与特点进行了分析对比。仿真结果验证了计算的正确性及燃料最优轨道相比能量最优轨道燃料消耗较少的事实。   相似文献   

10.
连续小推力非开普勒悬浮轨道在深空探测与地球极地观测任务中有着重要的应用前景。归纳了电推进、太阳帆推进等连续小推力技术的发展历程与现状;阐述了日心、行星悬浮轨道的动力学特性、稳定性、轨道保持策略;分析了三体问题下人工拉格朗日点的优势及其在深空探测方面的应用;讨论了悬浮轨道编队飞行的研究方法与控制策略。最后针对小推力悬浮轨道研究发展面临的难题,提出了研究新思路和应用新方向。  相似文献   

11.
基于一种高效高精度的Battin多圈Lambert算法提出一种考虑轨道摄动的广义多圈Lambert算法.与现有算法相比,本算法虽然原理复杂但计算流程非常简单,效率极高,分别通过几次内外循环就可满足精度要求.广义多圈Lambert算法结合一种可行解迭代交会模型构成了一个通用的多圈多脉冲交会规划框架,应用两步法求解此多变量的复杂工程优化问题,首先利用高效率的进化全局优化算法以及解析轨道模型作全局搜索,然后利用序列二次规划算法以及简化高精度轨道计算模型作局部搜索,此方法可以保证高效高精度的求解多圈多脉冲交会问题.算例表明此方法特别适用于满足实际工程约束的交会规划问题.  相似文献   

12.
以地球同步轨道卫星转移轨道设计为背景,针对全化学推进燃料消耗大和全电推进转移时间长的问题,开展了化学 电混合推进转移轨道优化设计与特性分析。首先,讨论了轨道倾角和近地点幅角变化对混合推进转移轨道的影响。研究表明,在混合推进优化设计中需要将轨道倾角作为优化变量之一。然后,以近地点半径、远地点半径、轨道倾角为优化变量生成搜索网格,得到过渡轨道集。针对每条过渡轨道,构建化学推进转移段和电推进转移段。其中化学推进段采用单圈兰伯特转移解算,电推进段采用混合法优化。最后,以燃料消耗和转移时间为指标,在搜索域内开展解算分析,研究了混合推进轨道在整个搜索域内的变化趋势。该方法可以提供具有不同燃料消耗和转移时间的混合推进转移解集,拓宽了解空间,可供轨道设计人员根据任务约束灵活选用。  相似文献   

13.
顶层任务规划通常与星座组网紧密结合,小卫星分散灵活的特性尤其适用于星群规模化在轨运行。针对热点区域覆盖和全球覆盖的不同任务需求,提出了对构型多变量进行全局寻优和利用智能优化技术进行星座构型优化的方法,两种优化方法可分别获得小规模星群最优效能与超大型星群的较优效能。优化方法不受轨道类型和任务目标分布的约束,具有良好的鲁棒性。  相似文献   

14.
A chronological review of studies in ISAS concerning collisions in space is presented. The collision probability in space with artificial orbiting bodies was estimated, and a Space Traffic Control System was proposed, in 1971. The design of a space station for safety against collision hazards was discussed in 1972. A trajectory optimization technique for low-thrust multiple rendezvous mission in order ti sweep space debris around the earth was developed in 1977. In 1984, the collision probability was reestimated using space bedris data accumulated for more than a decade. Several experimental projects in ISAS, such as hypervelocity impact experiments using a railgun system, sampling and measuring of alumina particles in exhaust plume of solid-propellant propellant rocket motors, and a result of analysis on the behavior of such alumina particles in orbit are also introduced.  相似文献   

15.
深空探测作为人类航天活动的重要方向,是人类探索宇宙奥秘和寻求长久发展的必然途径,也是衡量一个国家综合国力和科学技术发展水平的重要标志。深空探测轨道控制技术作为决定深空探测任务成败的关键技术之一,越来越多地受到关注并得到应用,成为各国深空探测技术研究和发展的热点。以我国探月工程各次任务为脉络,简述了历次任务轨道控制的目标和实施效果,总结了主要技术创新,在此基础上,展望了我国未来深空探测轨道控制的发展趋势。  相似文献   

16.
Asteroid mining has the potential to greatly reduce the cost of in-space manufacturing, production of propellant for space transportation and consumables for crewed spacecraft, compared to launching the required resources from the Earth’s deep gravity well. This paper discusses the top-level mission architecture and trajectory design for these resource-return missions, comparing high-thrust trajectories with continuous low-thrust solar-sail trajectories. The paper focuses on maximizing the economic Net Present Value, which takes the time-cost of finance into account and therefore balances the returned resource mass and mission duration. The different propulsion methods are compared in terms of maximum economic return and sets of attainable target asteroids. Results for transporting resources to geostationary orbit show that the orbital parameter hyperspace of suitable target asteroids is considerably larger for solar sails, allowing for more flexibility in selecting potential target asteroids. Also, results show that the Net Present Value that can be realized is larger when employing solar sailing instead of chemical propulsion. In addition, it is demonstrated that a higher Net Present Value can be realized when transporting volatiles to the Lunar Gateway instead of geostationary orbit. The paper provides one more step towards making commercial asteroid mining an economically viable reality by integrating trajectory design, propulsion technology and economic modelling.  相似文献   

17.
In this study, the Earth’s Trojan asteroid 2010 TK7 is selected as the rendezvous target. The multiple flyby sequence of asteroid exploration was proposed by optimizing the probe’s orbit. Impulsive maneuvers and low-thrust propulsion were used respectively to design the trajectories of the multiple asteroids exploration mission. Under impulsive maneuvers, gravity assist technique was adopted to reduce fuel consumption. First a reference orbit with only 2010 TK7 as the rendezvous target was designed. Then five asteroids near the reference orbit were selected as candidates. Finally, we obtained a multiple asteroids exploration sequence of three asteroids based on gravity assist technique and genetic algorithm, and an additional velocity impulse of 0.4?km/s was required. In the subsequent section, a sixth-degree inverse polynomial shape-based method is applied to the low-thrust trajectory design of 2010 TK7, and the exploration sequence under the action of low-thrust propulsion was provided.  相似文献   

18.
提出利用化-电混合模式推进系统完成地球同步卫星轨道转移任务,该推进系统极具应用前景,能够满足高有效载荷率、高入轨精度的工程实践需求。并针对基于该混合模式推进系统的转移轨道的优化方法展开研究,提出一种多阶段最优控制问题(OCP)的高斯伪谱法求解方法。该方法通过分段点的关联设置,将多个经高斯伪谱法转化而来的非线性规划问题转化为一个连贯的非线性规划问题(NLP)。两个不同算例的仿真过程与分析结果表明,该方法能够有效地解决多阶段非光滑连接轨道的优化问题,具有运算效率高、收敛性半径大、求解精度高等优点,可便捷地处理化 电混合模式推进系统的转移轨道优化设计问题。  相似文献   

19.
空间核电推进(Nuclear Electric Propulsion,NEP)系统是一种将核热能转换成电能,并驱动大功率电推力器而产生推力的革命性空间推进技术。和传统推进技术相比,NEP具有高比冲、大功率、长寿命等技术优势,非常适合未来大规模深空探测任务。基于NEP系统组成和小推力轨道理论,建立了以有效载荷为目标的NEP系统比质量优化模型。该模型能够解析NEP航天器的轨道运行时间、比质量、功率与有效载荷比的复杂耦合关系,为任务优化提供了计算依据。最后,利用该模型对NEP系统完成NASA "Juno号"航天任务进行了技术指标评估分析。计算表明,当NEP系统比质量达到4.8 kg/kWe时,其能将"Juno号"航天任务的地木转移时间由2 266 d缩短至665 d,有效载荷由160 kg提高到1 179 kg,极大地提高了航天器的探测能力,为任务方案的可行性论证和后续设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号