首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Daniel Goldin set the record for longevity as administrator of NASA, serving from 1992 to 2001. Active and controversial, he was unusually visible as a self-proclaimed ‘agent of change’. Coping with a turbulent political environment, Goldin directed NASA from the end of the Cold War to the early 21st century. He effected change in the multitude of programs under his aegis, especially the Space Station and robotic Mars program. He was hailed at one point as a miracle worker and poster boy of government reinvention for his ‘faster, better, cheaper’ strategy of ‘doing more with less’. But Goldin left the agency under fire for cost overruns and reforms that reached too far. Using a policy innovation process approach, this paper traces Goldin's eventful years at NASA, his policy ends and administrative and technological means. It analyzes the record of success and failure of one of the most, influential administrators in NASA history. That record provides useful lessons for how an administrator gains, uses, and loses power in the US space policy system.  相似文献   

2.
Eligar Sadeh   《Space Policy》2004,20(3):171-188
This paper analyzes the dynamics of cooperation of the International Space Station (ISS) program from its inception in 1981 to the final Framework Agreements for cooperation concluded in 1998. These dynamics include technical and organizational arrangements, and policy preferences. Dynamics related to technical arrangements deal with technological and scientific resources, the former governed through mechanisms for control of technology transfer, the latter regulated through intellectual property rights provisions. The dynamics linked to organizational arrangements concern authority patterns—characterized by national and international responses—and bilateral and multilaterial decision-making patterns. The dynamics of policy preferences encompass functional and symbolic dimensions. Functional issues are structured through legal and political regimes that govern the ISS program. The symbolic dimension, which includes prestige, legitimacy, influence and international accountability, frames the nature of the cooperation realized for the ISS program. ISS cooperation has evolved through three stages: (1) coordination, where collaboration is engendered through institutional (International Coordinating Working Group) and ad hoc cooperative relationships (groups of scientists and engineers sharing information); (2) augmentation, which equates with technological enhancements of a national project that involve primarily bilateral arrangements; (3) interdependence, which deals with cooperation in enabling and critical path technologies that are arranged both bilaterally and multilaterally.  相似文献   

3.
美国载人航天商业运输的发展   总被引:2,自引:1,他引:1  
张蕊 《航天器工程》2011,20(6):86-93
研究了美国载人航天商业运输的发展现状和趋势。美国在取消星座计划之后,实施商业乘员和货物项目,将依靠商业运输器实现"国际空间站"的乘员和货物运输,以缩短"后航天飞机"时代(航天飞机退役后)运输的断档期。美国商业乘员和货物项目包括商业轨道运输服务(COTS)计划、商业再补给服务(CRS)计划和商业乘员开发(CCDev)计划...  相似文献   

4.
Joseph N. Pelton   《Space Policy》2010,26(4):246-248
The Space Transportation System (STS), for better or worse, has dominated the US space program for some 30 years and is now an American icon. The Space Shuttle orbiters have flown over 120 missions and certainly accomplished some amazing feats, including the deployment of the International Space Station (ISS), the launch and double repair of the Hubble Telescope, a number of classified missions for the US defense establishment and the cementing of international cooperation in space. As the remaining Space Shuttle orbiters head toward various museums, it is timely to look at the STS program in terms of key US space policy decisions that have paralleled the Space Shuttle’s often troubled history. This article seeks, from both a historical and a policy perspective, to assess what might have been. While noting the major accomplishments of the STS, it also identifies what can best be characterized as major lost opportunities and flawed policy decisions that have had multi-billion dollar consequences. In this regard, the US Congress, the White House, and NASA leadership have all played a role. If there have been failings, they have not been by NASA alone, but the entire US space policy leadership.  相似文献   

5.
In 2009 President Obama proposed a budget for the National Aeronautics and Space Administration (NASA) that canceled the Constellation program and included the development of commercial crew transportation systems into low Earth orbit. This significant move to shift human spaceflight into the private sector sparked political debate, but much of the discourse has focused on impacts to “safety.” Although no one disputes the importance of keeping astronauts safe, strategies for defining safety reveal contrasting visions for the space program and opposing values regarding the privatization of U.S. space exploration. In other words, the debate over commercial control has largely become encoded in arguments over safety. Specifically, proponents of using commercial options for transporting astronauts to the International Space Station (ISS) argue that commercial vehicles would be safe for astronauts, while proponents of NASA control argue that commercial vehicles would be unsafe, or at least not as safe as NASA vehicles. The cost of the spaceflight program, the technical requirements for designing a vehicle, the track record of the launch vehicle, and the experience of the launch provider are all incorporated into what defines safety in human spaceflight. This paper analyzes these contested criteria through conceptual lenses provided by fields of science and technology policy (STP) and science, technology, and society (STS). We ultimately contend that these differences in definition result not merely from ambiguous understandings of safety, but from intentional and strategic choices guided by normative positions on the commercialization of human spaceflight. The debate over safety is better considered a proxy debate for the partisan preferences embedded within the dispute over public or private spaceflight.  相似文献   

6.
《Acta Astronautica》2008,62(11-12):1076-1084
Over the past fifteen years, major U.S. initiatives for the development of new launch vehicles have been remarkably unsuccessful. The list is long: NLI, SLI, and X-33, not to mention several cancelled programs aimed at high speed airplanes (NASP, HSCT) which would share some similar technological problems.The economic aspects of these programs are equally as important to their success as are the technical aspects. In fact, by largely ignoring economic realities in the decisions to undertake these programs and in subsequent management decisions, space agencies (and their commercial partners) have inadvertently contributed to the eventual demise of these efforts.The transportation revolution that was envisaged by the promises of these programs has never occurred. Access to space is still very expensive; reliability of launch vehicles has remained constant over the years; and market demand has been relatively low, volatile and slow to develop. The changing international context of the industry (launching overcapacity, etc.) has also worked against the investment in new vehicles in the U.S. Today, unless there are unforeseen technical breakthroughs, orbital space access is likely to continue as it has been with high costs and market stagnation.Space exploration will require significant launching capabilities. The details of the future needs are not yet well defined. But, the question of the launch costs, the overall demand for vehicles, and the size and type of role that NASA will play in the overall launch market is likely to influence the industry. This paper will emphasize the lessons learned from the economic and management perspective from past launch programs, analyze the issues behind the demand for launches, and project the challenges that NASA will face as only one new customer in a very complex market situation. It will be important for NASA to make launch vehicle decisions based as much on economic considerations as it does on solving new technical challenges.  相似文献   

7.
Over the past fifteen years, major U.S. initiatives for the development of new launch vehicles have been remarkably unsuccessful. The list is long: NLI, SLI, and X-33, not to mention several cancelled programs aimed at high speed airplanes (NASP, HSCT) which would share some similar technological problems.The economic aspects of these programs are equally as important to their success as are the technical aspects. In fact, by largely ignoring economic realities in the decisions to undertake these programs and in subsequent management decisions, space agencies (and their commercial partners) have inadvertently contributed to the eventual demise of these efforts.The transportation revolution that was envisaged by the promises of these programs has never occurred. Access to space is still very expensive; reliability of launch vehicles has remained constant over the years; and market demand has been relatively low, volatile and slow to develop. The changing international context of the industry (launching overcapacity, etc.) has also worked against the investment in new vehicles in the U.S. Today, unless there are unforeseen technical breakthroughs, orbital space access is likely to continue as it has been with high costs and market stagnation.Space exploration will require significant launching capabilities. The details of the future needs are not yet well defined. But, the question of the launch costs, the overall demand for vehicles, and the size and type of role that NASA will play in the overall launch market is likely to influence the industry. This paper will emphasize the lessons learned from the economic and management perspective from past launch programs, analyze the issues behind the demand for launches, and project the challenges that NASA will face as only one new customer in a very complex market situation. It will be important for NASA to make launch vehicle decisions based as much on economic considerations as it does on solving new technical challenges.  相似文献   

8.
Eligar Sadeh   《Space Policy》2006,22(4):235-248
The public management dynamics of human spaceflight at NASA in the post-Apollo era—Space Shuttle, International Space Station, and the United States national vision for space exploration—are examined. A number of variables are applied to assess this. Public management processes are identified as a function of political accountability, organizational decision-making and cultures, and technical aspects directed at high reliability and safety of the large-scale, complex, and high-risk technologies that characterize NASA's human spaceflight programs. The findings indicate that these variables are causally linked to management outcomes through dynamics of centralized and decentralized organizational approaches. The success or failure of NASA's human spaceflight programs are linked to organizational management based on dynamics between centralized aspects of management, like controls over cost and schedule, and decentralized aspects, such as engineering authority over technical development.  相似文献   

9.
The idea for using the International Space Station (ISS) as a platform for exploration has matured in the past few years and the concept continues to gain momentum. ISS provides a robust infrastructure which can be used to test systems and capabilities needed for missions to the Moon, Mars, asteroids and other potential destinations. International cooperation is a critical enabler and ISS has already demonstrated successful management of a large multi-national technical endeavor. Systems and resources needed for expeditions can be aggregated and thoroughly tested at ISS before departure thus providing wide operational flexibility and the best assurance of mission success. A small part of ISS called an Exploration Platform (ISS-EP) can be placed in cislunar space providing immediate benefits and flexibility for future exploration missions.We will show how ISS and the ISS-EP can be used to reduce risk and improve the operational flexibility for missions beyond low Earth orbit. Life support systems and other technologies developed for ISS can be evolved and adapted to the ISS-EP and other exploration spacecrafts. New technology, such as electric propulsion and advanced life support systems can be tested and proven at ISS as part of an incremental development program. Commercial companies who are introducing transportation and other services will benefit with opportunities to contribute to the mission since ISS will serve as a focal point for the commercialization of low earth orbit services. Finally, we will show how the use of ISS provides immediate benefits to the scientific community because its capabilities are available today and certain critical aspects of exploration missions can be simulated.  相似文献   

10.
The International Space Station (ISS) is no longer a paper program, focused on design, development and planning. It is an operational program, with hardware soon to be launched and ground systems in place. Additional modules, components and elements are now under construction in almost all of the 16 ISS International Partner and Participant countries, with metal being bent, software being written, and testing ongoing. Crew members for the first four crews are in training in the U.S. and Russia, with the first crew launching in mid 1999. Mission control centers are fully functioning in Houston and Moscow, with operations centers in St. Hubert, Darmstadt, Tsukuba, Turino, and Huntsville going on line as they are required.

The International Space Station, as the largest international civil program in history, features unprecedented technical, managerial, and international complexity. Seven international partners and participants encompassing 15 countries are involved in the ISS. Each partner is contributing and will be operating separate pieces of hardware, to be integrated on-orbit into a single orbital station. Mission control centers, launch vehicles, astronauts/cosmonauts, and support services will be provided by partners across the globe, but must function in a coordinated, integrated fashion. This paper will review the accomplishments of the ISS Program and each of the Partners and Participants over the past year, focusing on completed milestones and hardware. It will also give a status report on the development of the remainder of the ISS modules and components by each Partner and Participant, and discuss upcoming challenges.  相似文献   


11.
Among the principal objectives of the Phase 1 NASA/Mir program were for the United States to gain experience working with an international partner, to gain working experience in long-duration space flight, and to gain working experience in planning for and executing research on a long-duration space platform. The Phase 1 program was to provide the US early experience prior to the construction and operation of the International Space Station (Phase 2 and 3). While it can be argued that Mir and ISS are different platforms and that programmatically Phase 1 and ISS are organized differently, it is also clear that many aspects of operating a long-duration research program are platform independent. This can be demonstrated by a review of lessons learned from Skylab, a US space station program of the mid-1970s, many of which were again “learned” on Mir and are being “learned” on ISS. Among these are optimum crew training strategies, on-orbit crew operations, ground support, medical operations and crew psychological support, and safety certification processes.  相似文献   

12.
Several nations are currently engaging in or planning for robotic and human space exploration programs that target the Moon, Mars and near-Earth asteroids. These ambitious plans to build new space infrastructures, transport systems and space probes will require international cooperation if they are to be sustainable and affordable. Partnerships must involve not only established space powers, but also emerging space nations and developing countries; the participation of these new space actors will provide a bottom-up support structure that will aid program continuity, generate more active members in the space community, and increase public awareness of space activities in both developed and developing countries. The integration of many stakeholders into a global space exploration program represents a crucial element securing political and programmatic stability. How can the evolving space community learn to cooperate on a truly international level while engaging emerging space nations and developing countries in a meaningful way? We propose a stepping stone approach toward a global space exploration program, featuring three major elements: (1) an international Earth-based field research program preparing for planetary exploration, (2) enhanced exploitation of the International Space Station (ISS) enabling exploration and (3) a worldwide CubeSat program supporting exploration. An international Earth-based field research program can serve as a truly global exploration testbed that allows both established and new space actors to gain valuable experience by working together to prepare for future planetary exploration missions. Securing greater exploitation of the ISS is a logical step during its prolonged lifetime; ISS experiments, partnerships and legal frameworks are valuable foundations for exploration beyond low Earth orbit. Cooperation involving small, low-cost missions could be a major stride toward exciting and meaningful participation from emerging space nations and developing countries. For each of these three proposed stepping stones, recommendations for coordination mechanisms are presented.  相似文献   

13.
Russian Progress transport cargo vehicles have successfully been used in different space station programs since 1978. At present time, they play an important role in the International Space Station (ISS) project. Main tasks performed by the transport cargo vehicle (TCV) in the station program are the following: refueling of the station, delivery of consumables and equipment, waste removal, station attitude control and orbit correction maneuver execution.  相似文献   

14.
In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program.  相似文献   

15.
The International Space Station will provide an extremely high-quality, long-duration microgravity environment for the conduct of research. In addition, the ISS offers a platform for performing observations of Earth and Space from a high-inclination orbit, outside of the Earth's atmosphere. This unique environment and observational capability offers the opportunity for advancement in a diverse set of research fields. Many of these disciplines do not relate to one another, and present widely differing approaches to study, as well as different resource and operational requirements. Significant challenges exist to ensure the highest quality research return for each investigation. Requirements from different investigations must be identified, clarified, integrated and communicated to ISS personnel in a consistent manner. Resources such as power, crew time, etc. must be apportioned to allow the conduct of each investigation. Decisions affecting research must be made at the strategic level as well as at a very detailed execution level. The timing of the decisions can range from years before an investigation to real-time operations. The international nature of the Space Station program adds to the complexity. Each participating country must be assured that their interests are represented during the entire planning and operations process. A process for making decisions regarding research planning, operations, and real-time replanning is discussed. This process ensures adequate representation of all research investigators. It provides a means for timely decisions, and it includes a means to ensure that all ISS International Partners have their programmatic interests represented.  相似文献   

16.
In today's fiscally constrained environment, it can be expected that systems designed for one space program will increasingly be used to support other programs. The example of the U.S. extravehicular mobility unit (EMU), designed for use with the Space Shuttle, and now part of the baseline for the International Space Station (ISS) program, illustrates the adaption process. Certifying the Shuttle's EMU for use aboard ISS requires addressing three fundamental issues: Identifying new ISS requirements to be imposed on the EMU. Extending Shuttle's EMU on-orbit service interval to meet ISS's longer missions. Certifying Shuttle's EMU to meet new environments unique to ISS. Upon completion of the certification process, Shuttle's EMU will meet all requirements for supporting both the Shuttle and ISS program. This paper discusses the processes for addressing these issues and progress to date in achieving resolution.  相似文献   

17.
In 1996, the National Research Council's Committee on Risk Characterization argued convincingly for the implementation of more participatory approaches to improve policy making by incorporating a wide range of stakeholder values and concerns in policy decisions. Guidance about how to best carry out such an approach in an agency like NASA is less clear. To address this gap, this paper discusses how the use of a structured approach to involve expert and non-expert stakeholders in policy making can improve the quality of stakeholder involvement and resulting decisions for space policy making at NASA. Supporting this discussion are results from two recent experiments. One compared the quality and type of participants’ input in a conventional stakeholder workshop with that of a more structured participatory process. The results from this experiment showed that a structured decision approach leads to more thoughtful and better-informed decisions. A second experiment showed that structured, participatory decision processes can help to legitimize space policy decisions after they have been implemented, leading to future benefits for the space agency.  相似文献   

18.
Kicza M  Erickson K  Trinh E 《Acta Astronautica》2003,53(4-10):659-663
Recent events in the International Space Station (ISS) Program have resulted in the necessity to re-examine the research priorities and research plans for future years. Due to both technical and fiscal resource constraints expected on the International Space Station, it is imperative that research priorities be carefully reviewed and clearly articulated. In consultation with OSTP and the Office of Management and budget (OMB), NASA's Office of Biological and Physical Research (OBPR) assembled an ad-hoc external advisory committee, the Biological and Physical Research Maximization and Prioritization (REMAP) Task Force. This paper describes the outcome of the Task Force and how it is being used to define a roadmap for near and long-term Biological and Physical Research objectives that supports NASA's Vision and Mission. Additionally, the paper discusses further prioritizations that were necessitated by budget and ISS resource constraints in order to maximize utilization of the International Space Station. Finally, a process has been developed to integrate the requirements for this prioritized research with other agency requirements to develop an integrated ISS assembly and utilization plan that maximizes scientific output.  相似文献   

19.
The invitation to Brazil to join the International Space Station (ISS) program illustrates the way that foreign-policy makers in the USA favor short-term decisions over long-term commitments, while, in accepting the invitation, Brazil was also promoting other objectives. In taking the initiative to invite Brazil, President Clinton provided a unique opportunity to a middle-to-low-ranking spacefaring developing country to join the program as part of NASA's quota for the ISS. However, this action was the result of exchanges and bargains between the two countries, involving domestic and international interests on both sides—not all directly related to ISS activities—targeted at security and industrialization issues. These included the international non-proliferation regime, the commercialization of space systems and facilities (particularly Brazil's Alcantara Launch Center) and intellectual property.  相似文献   

20.
Nearly six years after the launch of the first International Space Station element, and four years after its initial occupation, the United States and our 6 international partners have made great strides in operating this impressive Earth orbiting research facility. This past year we have done so in the face of the adversity of operating without the benefit of the Space Shuttle. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush affirmed the United States' commitment to completing construction of the International Space Station by 2010. The President also stated that we would focus our future research aboard the Station on the long-term effects of space travel on human biology. This research will help enable human crews to venture through the vast voids of space for months at a time. In addition, ISS affords a unique opportunity to serve as an engineering test bed for hardware and operations critical to the exploration tasks. NASA looks forward to working with our partners on International Space Station research that will help open up new pathways for future exploration and discovery beyond low Earth orbit. This paper provides an overview of the International Space Station Program focusing on a review of the events of the past year, as well as plans for next year and the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号