首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oncogenic potential of high-energy 56Fe particles (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at the Brookhaven National Laboratory was examined utilizing the mouse C3H 10T1/2 cell model. The dose-averaged LET for high-energy 56Fe is estimated to be 143 keV/μm with the exposure conditions used in this study. For 56Fe ions, the maximum relative biological effectiveness (RBEmax) values for cell survival and oncogenic transformation were 7.71 and 16.5 respectively. Compared to 150 keV/μm 4He nuclei, high-energy 56Fe nuclei were significantly less effective in cell killing and oncogenic induction. The prostaglandin E1 analog misoprostol, an effective oncoprotector of C3H 10T1/2 cells exposed to X rays, was evaluated for its potential as a radioprotector of oncogenic transformation with high-energy 56Fe. Exposure of cells to misoprostol did not alter 56Fe cytotoxicity or the rate of 56Fe-induced oncogenic transformation.  相似文献   

2.
Carcinogenesis is a multi-stage process with sequence of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer. In the present study, immortalized human bronchial (BEP2D) and breast (MCF-10F) cells were irradiated with graded doses of either 150 keV/micrometer alpha particles or 1 GeV/nucleon 56Fe ions. Transformed cells developed through a series of successive steps before becoming tumorigenic in nude mice. Cell fusion studies indicated that radiation-induced tumorigenic phenotype in BEP2D cells could be completely suppressed by fusion with non-tumorigenic BEP2D cells. The differential expressions of known genes between tumorigenic bronchial and breast cells induced by alpha particles and their respective control cultures were compared using cDNA expression array. Among the 11 genes identified to be differentially expressed in BEP2D cells, three (DCC, DNA-PK and p21(CIP1)) were shown to be consistently down-regulated by 2 to 4 fold in all the 5 tumor cell lines examined. In contrast, their expressions in the fusion cell lines were comparable to control BEP2D cells. Similarly, expression levels of a series of genes were found to be altered in a step-wise manner among tumorigenic MCF-10F cells. The results are highly suggestive that functional alterations of these genes may be causally related to the carcinogenic process.  相似文献   

3.
An understanding of the radiobiological effects of high LET radiation is essential for human risk estimation and radiation protection. In the present study, we show that a single, 30 cGy dose of 150 keV/micrometer 4He ions can malignantly transform human papillomavirus immortalized human bronchial epithelial [BEP2D] cells. Transformed cells produce progressively growing tumors in nude mice. The transformation frequency by the single dose of alpha particles is estimated to be approximately 4 X 10(-7). Based on the average cross-sectional area of BEP2D cells, it can be calculated that a mean traversal of 1.4 particles per cell is sufficient to induce tumorigenic conversion of these cells 3 to 4 months post-irradiation. Tumorigenic BEP2D cells overexpress mutated p53 tumor suppressor oncoproteins in addition to the cell cycle control gene cyclin D1 and D2. This model provides an opportunity to study the cellular and molecular changes at the various stages in radiation carcinogenesis involving human cells.  相似文献   

4.
Interaction between cell and extracellular matrix (ECM) plays a crucial role in tumor invasiveness and metastasis. Using an immortalized human bronchial epithelial (BEP2D) cell model, we showed previously that expression of a list of genes including Betaig-h3 (induced by transforming growth factor-beta), DCC (deleted in colorectal cancer), p21(cipl), c-fos, Heat shock protein (HSP27) and cytokeratin 14 were differentially expressed in several independently generated, radiation-induced tumor cell lines (TL1-TL5) relative to parental BEP2D cells. Our previous data further demonstrated that loss of tumor suppressor gene(s) as a likely mechanism of radiation carcinogenesis. In the present study, we chose Betaig-h3 and DCC that were downregulated in tumorigenic cells for further study. Restored expression of Betaig-h3 gene, not DCC gene, by transfecting cDNA into tumor cells resulted in a significant reduction in tumor growth. While integrin receptor alpha 5 beta 1 was overexpressed in tumor cells, its expression was corrected to the level found in control BEP2D cells after Betaig-h3 transfection. These data suggest that Betaig-h3 gene is involved in tumor progression by regulating integrin alpha 5 beta 1 receptor. Furthermore, exogenous TGF- beta 1 induced expression of Betaig-h3 gene and inhibited the growth of both control and tumorigenic BEP2D cells. Therefore, downregulation of Betaig-h3 gene may results from the decreased expression of upstream mediators such as TGF-beta. The findings provide strong evidence that the Betaig-h3 gene has tumor suppressor function in radiation-induced tumorigenic human bronchial epithelial cells and suggest a potential target for interventional therapy.  相似文献   

5.
We analyzed DNA and proteins obtained from normal and transformed human mammary epithelial cells for studying the neoplastic transformation by high-LET irradiation in vitro. We also examined microsatellite instability in human mammary cells transformed to various stages of carcinogenesis, such as normal, growth variant and tumorigenic, using microsatellite marker D5S177 on the chromosome 5 and CY17 on the Chromosome 10. Microsatellite instabilities were detected in the tumorigenic stage. These results suggest that microsatellite instability may play a role in the progression of tumorigenecity. The cause of the genomic instability has been suggested as abnormalities of DNA-repair systems which may be due to one of the three reasons: 1) alterations of cell cycle regulating genes. 2) mutations in any of the DNA mismatch repair genes. 3) mutation in any of the DNA strand breaks repair genes. No abnormality of these genes and encoded proteins, however was found in the present studies. These studies thus suggest that the microsatellite instability is induced by an alternative mechanism.  相似文献   

6.
We have studied the induction of morphological transformation of Syrian hamster embryo cells by low doses of heavy ions with different linear energy transfer (LET), ranging from 13 to 400 keV/μm. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), inoculated to culture dishes, and transformed colonies were identified when the cells were densely stacked and showed a crisscross pattern. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to 250 kVp X-rays showed an initial increase with LET, reaching a maximum value of about 7 at 100 keV/μm, and then decreased with the further increase in LET. Thus, we confirmed that high LET heavy ions are significantly more effective than X-rays for the induction of in vitro cell transformation.  相似文献   

7.
We present the analysis of archival Chandra high resolution X-ray spectra of AM Her. Emission lines from several hydrogen-like ions, helium-like ions, Fe-L shell transitions and Fe-K fluorescent are identified. Using the resonance, intercombination and forbidden lines of the few prominent helium-like ions, we infer a density greater than 2 × 1012 cm−3 and a temperature of 2 MK for the oxygen and neon line emitting regions in the accretion column of AM Her.  相似文献   

8.
The energy content of nonthermal particles in solar flares is shared between accelerated electrons and ions. It isimportant for understanding the particle acceleration mechanism in solar flares. Yohkoh observed a few intense flares which produced both strong gamma-ray lines and electron bremsstrahlung continuum. We analyze energy spectra of X-class solar flares on October 27, 1991(X6.1), November 6, 1997 (X9.4), July 14, 2000 (X5.7) and November 24, 2000 (X2.3). The accelerated electron and proton spectra are derived from a spectral analysis of their high-energy photon emission and the energy contents in >1 MeV electrons and >10 MeV protons are estimated to be 6×l028 – 4×1030 and 2×1028 – 5×1029 erg, respectively. We study the flare to flare variation in the energy content of >1 MeV electrons and >10 MeV protons for the four Yohkoh gamma-ray flares. Ratios of >1 MeV electron energy content to >10 MeV proton energy content are roughly within an order of magnitude.  相似文献   

9.
An overview is presented of electrons, protons and heavier ions (E > 20 keV) recorded by the energetic particle detector EPONA in the Comet Halley environment, 12–15 March, 1986. Pick-up ions were detected at distances of up to at least 7.5 × 106 km from the nucleus. Estimates of the energies that typical cometary ions may be expected to acquire from the solar wind pertaining at Encounter show that the pick-up process is insufficient to account for the energies of the particles detected. An additional mechanism must thus be postulated to account for the observed particle signatures. Preliminary correlations with magnetic and plasma wave data from other instruments suggest that the presence of MHD turbulence at several million kilometers upstream of the bowshock may have contributed to the acceleration of the first pick-up ions observed. The bowshock boundary (inbound) does not appear to have constituted a location where particle acceleration to high energies took place. Downstream of the shock boundary, hardening of the energy spectrum and the development of less anisotropic particle streaming was observed to occur when the spacecraft was in a turbulent environment 1 × 106 km from the nucleus. The waxing influence of mass loading as a mechanism for reducing energetic particle fluxes as well as the depletion of energetic ions due to their escape along open field lines and to charge exchange collision with neutrals in a progressively more stagnant solar wind, may be inferred in a regime (seen on the magnetometer data to be largely non-turbulent) traversed by the spacecraft from 5 × 105 km from the nucleus to within the magnetic pile-up region. A major burst of ions and electrons (not yet established to be of cometary origin) occurred when the spacecraft was close to the Contact Surface. A population of high energy electrons (from 180 keV to at least 300 keV) was detected for about one hour before Closest Approach and for several hours thereafter. Also an energetic beam of electrons was identified exiting from a location at about 1 × 106 km from the nucleus (outbound). Finally, differences between inbound and outbound particle signatures are described.  相似文献   

10.
A major concern for bystander effects is the probability that normal healthy cells adjacent to the irradiated cells become genomically unstable and undergo further carcinogenesis after therapeutic irradiation or space mission where astronauts are exposed to low dose of heavy ions. Genomic instability is a hallmark of cancer cells. In the present study, two irradiation protocols were performed in order to ensure pure populations of bystander cells and the genomic instability in their progeny were investigated. After irradiation, chromosomal aberrations of cells were analyzed at designated time points using G2 phase premature chromosome condensation (G2-PCC) coupled with Giemsa staining and with multiplex fluorescent in situ hybridization (mFISH). Our Giemsa staining assay demonstrated that elevated yields of chromatid breaks were induced in the progeny of pure bystander primary fibroblasts up to 20 days after irradiation. mFISH assay showed no significant level of inheritable interchromosomal aberrations were induced in the progeny of the bystander cell groups, while the fractions of gross aberrations (chromatid breaks or chromosomal breaks) significantly increased in some bystander cell groups. These results suggest that genomic instability occurred in the progeny of the irradiation associated bystander normal fibroblasts exclude the inheritable interchromosomal aberration.  相似文献   

11.
Astronauts are exposed to heavy ions during space missions and heavy ion induced-chromosome damages have been observed in their lymphocytes. This raises the problem of the consequence of longer space flights. Recent studies show that some alterations can appear many cell generations after the initial radiation exposure as a delayed genomic instability. This delayed instability is characterized by the accumulation of cell alterations leading to cell transformation, delayed cell death and mutations. Chromosome instability was shown in vitro in different model systems (Sabatier et al., 1992; Marder and Morgan, 1993, Kadhim et al., 1994 and Holmberg et al., 1993, 1995). All types of radiation used induce a chromosome instability, however, heavy ions cause the most damage. The period of chromosome instability followed by the formation of clones with unbalanced karyotypes seems to be shared by cancer cells. The shortening of telomere sequences leading to the formation of telomere fusions is an important factor in the appearance of this chromosome instability.  相似文献   

12.
Heritable radiation-induced genetic alterations have long been assumed to be "fixed" within the first cell division. However, there is a growing body of evidence that a considerable fraction of cells surviving radiation exposure appear normal, but a variety of mutational changes arise in their progeny due to a transmissible genomic instability. In our investigations of G-banded metaphases, non-clonal cytogenetic aberrations, predominantly chromatid-type aberrations, have been observed in the clonal descendants of murine and human haemopoietic stem cells surviving low doses (approximately l track per cell) of alpha-particle irradiations. The data are consistent with a transmissible genetic instability induced in a stem cell resulting in a diversity of chromosomal aberrations in its clonal progeny many cell divisions later. Recent studies have demonstrated that the instability phenotype persists in vivo and that the expression of chromosomal instability has a strong dependence on the genetic characteristics of the irradiated cell. At the time when cytogenetic aberrations are detected, an increased incidence of hprt mutations and apoptotic cells have been observed in the clonal descendants of (alpha-irradiated murine haemopoietic stem cells. Thus, delayed chromosomal abnormalities, delayed cell death by apoptosis and late-arising specific gene mutations may reflect diverse consequences of radiation-induced genomic instability. The relationship, if any, between these effects is not established. Current studies suggest that expression of these delayed heritable effects is determined by the type of radiation exposure, type of cell and a variety of genetic factors.  相似文献   

13.
High energy chemical reactions and atom molecule interactions might be important for cosmic chemistry with respect to the accelerated species in solar wind, cosmic rays, colliding gas and dust clouds and secondary knock-on particles in solids. “Hot” atoms with energies ranging from a few eV to some MeV can be generated via nuclear reactions and consequent recoil processes. The chemical fate of the radioactive atoms can be followed by radiochemical methods (radio GC or HPLC). Hot atom chemistry may serve for laboratory simulation of the reactions of energetic species with gaseous or solid interstellar matter. Due to the effective measurement of 108–1010 atoms only it covers a low to medium dose regime and may add to the studies of ion implantation which due to the optical methods applied are necessarily in the high dose regime.

Experimental results are given for the systems: C/H2O (gas), C/H2O (solid, 77 K), N/CH4 (solid, 77K) and C/NH3 (solid, 77 K). Nuclear reactions used for the generation of 2 to 3 MeV atoms are: 14N(p, ) 11C, 16O(p, pn) 11C and 12C(d,n) 13N with 8 to 45 MeV protons or deuterons from a cyclotron. Typical reactions products are: CO, CO2, CH4, CH2O, CH3OH, HCOOH, NH3, CH3NH2, cyanamide, formamidine, guanidine etc. Products of hot reactions in solids are more complex than in corresponding gaseous systems, which underlines the importance of solid state reactions for the build-up of precursors for biomolecules in space. As one of the major mechanisms for product formation, the simultaneous or fast consecutive reactions of a hot carbon with two target molecules (reaction complex) is discussed.  相似文献   


14.
Genomic instability induced by high and low LET ionizing radiation.   总被引:9,自引:0,他引:9  
Genomic instability is the increased rate of acquisition of alterations in the mammalian genome, and includes such diverse biological endpoints as chromosomal destabilization, aneuploidy, micronucleus formation, sister chromatid exchange, gene mutation and amplification, variations in colony size, reduced plating efficiency, and cellular transformation. Because these multiple endpoints persist long after initial radiation exposure, genomic instability has been proposed to operate as a driving force contributing to genetic plasticity and carcinogenic potential. Many of these radiation-induced endpoints depend qualitatively and quantitatively on genetic background, dose and LET. Differences in the frequency and temporal expression of chromosomal instability depend on all three of the foregoing factors. On the other hand, many of these endpoints appear independent of dose and show bystander effects, implicating non-nuclear targets and epigenetic regulatory mechanisms. The present work will survey results concerning the LET dependence of genomic instability and the role of epigenetic mechanisms, with a particular emphasis on the endpoint of chromosomal instability.  相似文献   

15.
Loss of function of DNA repair genes has been implicated in the development of many types of cancer. In the last several years, heterozygosity leading to haploinsufficiency for proteins involved in DNA repair was shown to play a role in genomic instability and carcinogenesis after DNA damage is induced, for example by ionizing radiation. Since the effect of heterozygosity for one gene is relatively small, we hypothesize that predisposition to cancer could be a result of the additive effect of heterozygosity for two or more genes critical to pathways that control DNA damage signaling, repair or apoptosis. We investigated the role of heterozygosity for Atm, Rad9 and Brca1 on cell oncogenic transformation and cell survival induced by 1 GeV/n56Fe ions. Our results show that cells heterozygous for both Atm and Rad9 or Atm and Brca1 have high survival rates and are more sensitive to transformation by high energy iron ions when compared with wild-type controls or cells haploinsufficient for only one of these proteins. Since mutations or polymorphisms for similar genes exist in a small percentage of the human population, we have identified a radiosensitive sub-population. This finding has several implications. First, the existence of a radiosensitive sub-population may distort the shape of the dose–response relationship. Second, it would not be ethical to put exceptionally radiosensitive individuals into a setting where they may potentially be exposed to substantial doses of radiation.  相似文献   

16.
The data from the synchronous-orbit satellites of the Gorizont series are used to study the dependences of the ion flux variation amplitudes in the synchronous altitude region (the diurnal behaviour) on particle energies and on the form and rigidity of the particle energy spectrum. The proton fluxes were measured in the energy range E 60–120 keV, and the [N,0]2+ and [C,N,0]4+ ion fluxes in the energy range E 60–70 keV/e.

The ratio of the diurnal variation amplitudes of the studied ions is shown to correspond to the similarity of their energy spectra in the E/Q representation. The magnetically-quiet time gradient of the distribution function F(μ,J,L) in the synchronous-orbit region is shown to be (∂F/∂L)=0 for the H+ and [N,0]2+ ions and (∂F/∂L) > 0 for the [C,N,0]4+ ions (at the values of μ corresponding to the examined energy ranges). During magnetically-disturbed periods the inner boundary of the (∂F/∂L)=0 region shifts to lower L and (∂ F/∂L) = O in the synchronous altitude region must be also for the [C,N,O]4+ ions.  相似文献   


17.
The purpose of this study was to evaluate dose–response relationships for the in vivo induction of micronuclei (MN) as a measure of both initial radiation damage and the induction of genomic instability. These measurements were made in mouse blood erythrocytes as a function of radiation dose, radiation quality, time after irradiation, and the genetic background of exposed individuals. Blood samples were collected from two strains of mouse (CBA/CaJ and C57BL/6J) at different times up to 3 months following a whole-body exposure to various doses of 1 GeV/amu 56Fe ions (0, 0.1, 0.5 and 1.0 Gy, at the dose rate of a 1 Gy/min) or 137Cs gamma rays (0, 0.5, 1.0 and 3.0 Gy, at the dose rate of 0.72 Gy/min). Blood-smear slides were stained with acridine orange (AO). The frequencies of MN were measured in mature normochromatic-erythrocytes (MN-NCEs) and in immature polychromatic-erythrocytes (MN-PCEs). Effects of both types of radiation on erythropoiesis were also evaluated. As a measure of cell progression delay, a dose-dependent decrease in numbers of PCEs was observed at day 2 post-exposure in both strains, regardless of radiation quality. Subsequently, the levels of PCEs increased in all exposed mice, reaching control levels (or higher) by day 7 post-exposure. Further, at day 2 after the exposure, there was no increase in the frequency of MN-PCEs in CBA/CaJ mice exposed to 56Fe ions while the frequency of MN-PCEs elevated as a function of dose in the C57BL/6J mice. At day 4, there was no dose related increase in MN-NCEs in either strain of mouse exposed to 137Cs gamma rays. Additionally, at the early sacrifice times (days 2 and 4), 56Fe ions were slightly more effective (per unit dose) in inducing MN-NCEs than 137Cs gamma rays in CBA/CaJ mice. However, there was no increase in the frequency of MN-NCEs at late times after an acute exposure to either type of radiation. In contrast, both types of radiation induced increased MN-PCEs frequencies in irradiated CBA/CaJ mice, but not C57BL/6J mice, at late times post-exposure. This finding indicates the potential induction of genomic instability in hematopoietic cells of CBA/CaJ mice by both types of radiation. The finding also demonstrates the influence of genetic background on radiation-induced genomic instability in vivo.  相似文献   

18.
Dry seeds of Zea mays, heterozygous for Lw1/lw1 alleles, sandwiched between nuclear track detectors aboard Chinese satellite for 15 days, were recovered and mutations in morphological characters on plants developed from these seeds, as well as their selected progenies, were investigated. The dosimetric results indicated that 85% of the seeds received at least 1 hit with Z≥20. About 10% of plants developed from flown seeds and 40% of observed selfed lines from the first generation plants showed some morphological changes, such as yellow stripes displayed on leaves, dwarf, anomogensis of floral organs and yellow-green seedlings, when compared with those from ground control. Using yellow stripes on leaves as the main endpoint for evaluating mutation induced in space environment, the frequency of stripe occurrence was 4.6% in the first generation plants, comparable with the results obtained from Long Duration Exposure Facility (LDEF) mission (Mei et al., 1994), but much lower than those from ground based 60 Co-gamma treatment at a dose of 100 Gy, which reached 35.5% in the selfed lines of the second generation. One hundred and ten random primers were screened in RAPD analysis to detect the variation on genomic DNA of plants with stripes on leaves. Of these primers, 10.9% were able to generate polymorphic bands between mutated plants and control, also, common band patterns in several progenies with the same mutation phenotype were observed. These results demonstrated that space radiation environment could induce inheritable mutagenic effects on plant seeds, and verified the change in genetic material in the mutants. Further study will be needed for a better understand of the nature and mechanism of this induction of mutation.  相似文献   

19.
Impulsive solar energetic particle (SEP) events are associated with impulsive X-ray flares, energetic electrons,and enhanced heavy ion abundances. Using instruments on ACE, we have examined the composition and origin of twelve impulsive SEP events from November 1997 to June 2000. All selected impulsive SEP events have enhanced 3He/4He ratios compared with the solar wind values. The range of 3He/4He ratios varies from 0.01 to 7.8. By assuming scatter-free propagation at zero degree pitch-angle, we fitted the minimum particle path lengths (from 1.2 to 1.4 AU, as expected), and estimated the ion event release time back at the Sun to within better than 30 minutes in most cases. We found only four events in which the release times agree for both 38–50 keV electrons and <1 MeV/nucleon ions. Five of our events have significant differences (>40 minutes) between the electron and ion onset times, all with ions injected later. Three impulsive ion events have no association with any impulsive electron event. Seven events have associated solar electromagnetic signatures (Type III radio bursts and/or X-ray flares).  相似文献   

20.
Three distinct boundaries are identified from the PICCA cometary ion observations within the innermost part of the coma of comet Halley: (1) the 'cometopause' at a cometocentric distance Rc 1.5×105 km, characterized by the appearance of water-group ions well above background; (2) the 'cold cometary plasma boundary' at Rc 3×104 km, characterized by a sudden and simultaneous decrease in the temperatures of all cometary ions, and (3) the 'ionopause' at Rc 6000 km, characterized by a fast decrease in the intensity of all cometary ions by a factor 3–5. Between the first two boundaries only ions with masses less than 50 amu are present, showing distinct maximum intensities at 18, 32 and 44 amu at the second boundary. Downstream of the second boundary also ions of mass 12, 64, 76, 86 and 100 amu are detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号