首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geometries, dipole moments, and rotational constants for the linear and/or bent cations, Cn+1H+ and CnN+(n = 1–6), were studied by the B3LYP method with the modest basis sets. For CnH+(n = odd; 3, 5, 7) and CnN+(n = even; 2, 4, 6), the theoretical rotational constants (Bes) of closed-shell singlet C3H+, C5H+, C7H+, CCN+, C4N+, and C6N+ were calculated to be about 11,244, 2420, 885.2, 11,970, 2439, and 880.8 MHz, respectively. By contrast, the triplets are stable than the corresponding singlets for CnH+(n = odd; 2, 4, 6) and CnN+(n = even; 3, 5) except CN+.  相似文献   

2.
3.
The measurements of positive ion composition in the high latitude D-region have revealed an excess of 34+ under distrubed conditions which has been interpreted as H2O2+. At the same altitude range near the transition height oxonium ions were measured as well. This paper presents a new model for the production and loss of oxonium ions with their production from H2O2+ + H2O → H3O+ + HO2 and their loss by attachment of N2 and/or CO2. A reaction constant of 8.5×10?28 (300/T)4 cm6s?1 has been obtained for the three body attachment H3O+ + CO2 + M → H3O+.CO2 + M from the measured density profile of 63+ in flight 18.1020. Mesospheric H2O and H2O2 densities are inferred from measurements of four high latitude ion compositions based on the oxonium model. The mixing ratios of hydrogen peroxide are up to two orders of magnitude higher compared to previous model calculations. In order to explain the missing production of odd hydrogen, we consider larger O(1D) densities, surface reactions of O(3P) on particles, and cathalytic photodissociation of water vapor on aerosol particles.  相似文献   

4.
The stratospheric and mesospheric sounder (SAMS) was launched in October 1978 on the NIMBUS 7 satellite. Between then and its eventual failure in June 1983 the instrument was used to collect over four years of radiance data from which atmospheric temperature and the abundances of a number of minor constituents have been derived. The paper will present fields of CH4 and N2O between 50S and 70N derived from SAMS data for the period 1979–1981. Global distributions of CH4 and N2O will be presented in various forms and the observed seasonal changes and interannual variability will be described. The paper will compare the SAMS CH4 and N2O data with model predictions and will comment upon some other areas of interest.  相似文献   

5.
A study of the evolution of the periodic and the quasi-periodic orbits near the Lagrangian point L2, which is located to the right of the smaller primary on the line joining the primaries and whose distance from the more massive primary is greater than the distance between the primaries, in the framework of restricted three-body problem for the Sun–Jupiter, Earth–Moon (relatively large mass ratio) and Saturn–Titan (relatively small mass ratio) systems is made. Two families of periodic orbits around the smaller primary are identified using the Poincaré surface of section method – family I (initially elliptical, gradually becomes egg-shaped with the increase in the Jacobi constant C and elongated towards the more massive primary) and family II (initially egg-shaped orbits elongated towards L2 and gradually becomes elliptical with the increase in C). The family I in the Sun–Jupiter and Saturn–Titan systems contains two separatrix caused by third-order and fourth-order resonances, while the Earth–Moon system has only one separatrix which is caused by third-order resonances. Also in the Sun–Jupiter and the Saturn–Titan systems, family I merge with family II, around Jacobian constant 3.0393 and 3.0163, respectively, while in the Earth–Moon system, family II evolves separately from two different branches. The two branches merge at C = 3.184515. In the Earth–Moon system, the family II contains a separatrix due to third-order resonances which is absent in the other two systems.  相似文献   

6.
Pressure increased during net photosynthetic O2 production in the light and decreased during respiratory O2 uptake during the dark in aquatic Closed Ecological Systems (CESs) with small head gas volumes. Because most CO2 will be in the liquid phase as bicarbonate and carbonate anions, and CO2 is more soluble than O2, volumes of gaseous CO2 and gaseous O2 will not change in a compensatory manner, leading to the development of pressure. Pressure increases were greatest with nutrient rich medium with NaHCO3 as the carbon source. With more dilute media, pressure was greatest with NaHCO3, and less with cellulose or no-added carbon. Without adequate turbulence, pressure measurements lagged dissolved O2 concentrations by several hours and dark respiration would have been especially underestimated in our systems (250–1000 ml). With adequate turbulence (rotary shaker), pressure measurements and dissolved O2 concentrations generally agreed during lights on/off cycles, but O2 measurements provided more detail. At 20 °C, 29.9 times as much O2 will distribute into the gas phase as in the liquid, per unit volume, as a result of the limited solubility of O2 in water and according to Henry’s Law. Thus even a small head gas volume can contain more O2 than a larger volume of water. When both dissolved and gaseous O2 and CO2 are summed, the changes in Total O2 and CO2 are in relatively close agreement when NaHCO3 is the carbon source. These findings disprove an assumption made in some of Taub’s earlier research that aquatic CESs would remain at approximately atmospheric pressure because approximately equal molar quantities of O2 and CO2 would exchange during photosynthesis and respiration; this assumption neglected the distribution of O2 between water and gas phases. High pressures can occur when NaHCO3 is the carbon source in nutrient rich media and if head-gas volumes are small relative to the liquid volume; e.g., one “worse case” condition developed 800 mm Hg above atmospheric pressure and broke the glass container. Plastic screw cap closures are likely to leak at high pressures and should not be assumed to seal unless tested at appropriate pressures. Pressure can be reduced by having larger head-gas volumes and using less concentrated nutrient solutions. It is important that pressure changes be considered for both safety and closure, and if total O2 is used as the measure of net photosynthesis and respiration, the O2 in the gas phase must be added to the dissolved O2.  相似文献   

7.
Though H2CO, H2CS, H2CCC, H2CCCC, H2CCO have been identified in cool interstellar molecular clouds, identification of H2CC is still awaited. To analyze its spectrum, collisional rate coefficients are required. We have calculated collisional rate coefficients for rotational transitions between 23 levels of ortho and para H2CC for kinetic temperatures 10, 20, 30, 40, and 50 K. The scattering problem is analyzed using the computer code MOLSCAT where the colliding partner is He atom. The interaction between H2CC and He has been calculated with GAUSSIAN 2003. For the interaction potential obtained with GAUSSIAN 2003, MOLSCAT is used to derive the parameters q(L,M,M|E)q(L,M,M|E) as a function of energy E   of the colliding partner. After averaging the parameters q(L,M,M|E)q(L,M,M|E) over a Maxwellian distribution, the parameters Q(L,M,M|T)Q(L,M,M|T) as a function of the kinetic temperature T in the cloud are obtained. Finally, the collisional rate coefficients have been calculated.  相似文献   

8.
We present results for the global elastic parameters h2 and l2 derived from the analysis of Satellite Laser Ranging (SLR) data. SLR data for the two satellites LAGEOS 1 and LAGEOS 2 observed during 2.5 years from January 3, 2005 until July 1, 2007 with 18 globally distributed ground stations were analysed using different approaches. The analysis was done separately for the two satellites and approaches to estimate the two elastic parameters independently and together were performed. We do a sequential analysis and study the stability of the estimates as a function of length of the data set used. The adjusted final values for h2 equal to 0.6151 ± 0.0008 and 0.6152 ± 0.0008, and those for l2 equal to 0.0886 ± 0.0003 and 0.0881 ± 0.0003 for LAGEOS 1 and LAGEOS 2 tracking data are compared to other independently derived estimates. These parameters and their errors achieve stability at about the 24 and 27 month time interval for h2 and l2, respectively.  相似文献   

9.
In this paper we present results for the global elastic parameters: Love number h2 and Shida number l2 derived from the analysis of Satellite Laser Ranging (SLR) data. SLR data for the two low satellites STELLA (H = 800 km) and STARLETTE (H = 810 km) observed during 2.5 years from January 3, 2005 until July 1, 2007 with 18 globally distributed ground stations were analyzed. The analysis was done separately for the two satellites. We do a sequential analysis and study the stability and convergence of the estimates as a function of length of the data set used.  相似文献   

10.
The ability to generate O2 and absorb CO2 of several co-cultured vegetable plants in an enclosed system was studied to provide theoretical reference for the future man-plant integrated tests. Four kinds of salad plants (Lactuca sativa L. var. Dasusheng, Lactuca sativa L. var. Youmaicai, Gynura bicolor and Cichorium endivia L.) were grown in the CELSS Integration Test Platform (CITP). The environmental factors including O2 and CO2 concentration were continuously monitored on-line and the plant biomass was measured at the end of the test. The changing rules of O2 and CO2 concentration in the system were basically understood and it was found that the O2 generated by the plants could satisfy the respiratory needs of 1.75 persons by calculation. It was also found that the plants could absorb the CO2 breathed out by 2 persons when the light intensity was raised to 550 mmol m−2 s−1 PPF. The results showed that the co-cultured plants hold good compatibility and excellent O2-generating and CO2-absorbing capability. They could also supply some fresh edible vegetable for a 2-person crew.  相似文献   

11.
The combined attitude and thermal control system (CATCS) combines the conventional attitude control and thermal control subsystems. Its principle is based on circulating a heat conducting fluid inside a closed duct wielding the excess onboard heat in order to produce the attitude control torques. Previously only the proportional-integral (PI) controller has been tested for CATCS. In this paper two other control options for CATCS were designed based on the H2 and H control methods to improve the attitude control performance of a small satellite. The control gain matrix with the minimum cost function is obtained by solving the Riccati equation and fed back to the system in order to achieve the system’s performance. The designed controllers can efficiently control the roll, pitch and yaw satellite attitudes. Simulations for the two techniques were carried out using Matlab and Simulink for ideal and non-ideal system models. Results show that the H2 controller has a better attitude control performance over the H controller and PI controller itself.  相似文献   

12.
目前显式构造降阶H控制器的算法仅适用于奇异H控制情形,为对非奇异情形使用这些算法,将广义对象的矩阵 A 分为 A 0和 Δ A 2部分,并且使( A 0, B 1, C 2, D 21)或 ( A 0, B 2, C 1, D 12)含有不稳定零点,从而可以使用构造降阶控制器的算法得到可用于构造降阶控制器的解( X , Y ).矩阵 A 的这种改变将使得对象的3个线性矩阵不等式中的1个发生改变,因此该解( X , Y )必须在 A 未改变时,代入发生改变的那个不等式并判断其是否成立,若成立则该解( X , Y )可用于对广义对象构造降阶控制器.数值算例表明了该算法的有效性.  相似文献   

13.
We describe the scientific case for and preliminary design of an instrument whose primary goal is to determine the chemistry (element abundance) and mineralogy (compound identity and abundance) of Titan’s surface using a combination of energy dispersive X-ray fluorescence spectroscopy (EDXRF) and X-ray diffraction (XRD). XRD is capable of identifying any crystalline substance present on Titan’s surface at relative abundances greater than ∼1 wt%, allowing unambiguous identification of, for example, structure I and II clathrates (even in the presence of ice), and various organic solids, which may include C2H2, C2H4, C4H2, HCN, CH3CN, HC3N, and C4N2). The XRF component of the instrument will obtain elemental abundances for 16 < Z < 60 with minimum detection limits better than 10 ppm (including detection of atmospheric noble gas isotopes), and may achieve detection limits of 0.01–1% for lighter elements down to Z = 6 (carbon). The instrument is well suited to integration with other analytical tools as part of a light-weight surface chemistry and mineralogy package. Although considerably less sensitive to elemental abundance than GC–MS (10−2 vs. 10−8) it is likely to be significantly lighter (<0.5 kg vs. 10 kg).  相似文献   

14.
N_2O/C_3H_8点火器初步实验   总被引:1,自引:1,他引:0  
为了研究氧化亚氮与丙烷的点火特性,首次提出了N2O/C3H8火炬式点火方案,设计、加工了点火器,并组建了点火实验系统,在不同的流量和余氧系数下进行了点火实验.结果表明:点火方案可行,喷嘴设计合理,雾化效果和余氧系数是决定点火器能否点燃的关键,余氧系数在0.222~0.321内点火器能可靠地被重复点燃并形成稳定的点火火炬.实验为N2O/C3H8点火器的进一步研究提供了参考,并为以后实现该点火器对发动机的成功点火奠定了基础.  相似文献   

15.
We present the preliminary results of the recent Hα narrow-band imaging carried out for NGC 2770 with the Gran Telescopio Canarias (GTC) equipped with OSIRIS. We put the polarization measurements reported in Gorosabel et al. (2010) for SN 2007uy and SN 2008D in the context of the morphological information inferred from the Hα imaging. We estimated the orientation of the interstellar polarization (ISP) at the position of SN 2007uy and, most interestingly, at the site of SN 2008D which has been subject of an intensive debate due to its possible connection with Gamma-Ray Bursts (GRBs). The Hα imaging reveals a clumpy interstellar medium (ISM) composed of hundreds of compact emitting regions, for which we determined their sizes. The derived size for the Hα emitting region coincident with SN 2008D is consistent with the ISM cell size limits imposed by Gorosabel et al. (2010) based on millimetric data. A deeper data analysis is under way and will be published elsewhere. This article represents the first attempt to study the site of a possible GRB-like event combining millimetric, polarimetric and narrow-band data.  相似文献   

16.
The International Reference Ionosphere (IRI) parameters B0 and B1 provide a representation of the thickness and shape, respectively, of the F2 layer of the bottomside ionosphere. These parameters can be derived from electron density profiles that are determined from vertical incidence ionograms. This paper aims to illustrate the variability of these parameters for a single mid latitude station and demonstrate the ability of the Neural Network (NN) modeling technique for developing a predictive model for these parameters. Grahamstown, South Africa (33.3°S, 26.5°E) was chosen as the mid latitude station used in this study and the B0 and B1 parameters for an 11 year period were determined from electron density profiles recorded at that station with a University of Massachusetts Lowell Center for Atmospheric Research (UMLCAR) Digisonde. A preliminary single station NN model was then developed using the Grahamstown data from 1996 to 2005 as a training database, and input parameters known to affect the behaviour of the F2 layer, such as day number, hour, solar and magnetic indices. An analysis of the diurnal, seasonal and solar variations of these parameters was undertaken for the years 2000, 2005 and 2006 using hourly monthly median values. Comparisons between the values derived from measured data and those predicted using the two available IRI-2001 methods (IRI tables and Gulyaeva, T. Progress in ionospheric informatics based on electron density profile analysis of ionograms. Adv. Space Res. 7(6), 39–48, 1987.) and the newly developed NN model are also shown in this paper. The preliminary NN model showed that it is feasible to use the NN technique to develop a prediction tool for the IRI thickness and shape parameters and first results from this model reveal that for the mid latitude location used in this study the NN model provides a more accurate prediction than the current IRI model options.  相似文献   

17.
The monthly hourly medians of maximum electron density, NmF2, at two Pakistani ionospheric stations, Karachi and Islamabad, have been determined for solar minimum (1996) and solar maximum (2000) and compared with IRI predictions using the URSI coefficients. At night and pre-noon period the NmF2 values at both stations are almost equal during the 2 years. However, at post-noon the values at Karachi are considerably larger than those at Islamabad due to the equatorial or geomagnetic anomaly. Karachi (geomag. coord. 16.44°N, 139.08°E) lies near the region of the equatorial anomaly (+20 and −20 geomagnetic latitude), so most of the NmF2 values at Karachi are larger than those at Islamabad (geomag. coord. 24.46°N, 145.67°E). The maximum monthly values of NmF2 show a semi-annual variation at Karachi and Islamabad both during 1996 and 2000 as predicted by IRI.  相似文献   

18.
含SiO2,ZrO2微粒复合镀镍层抗高温氧化性能   总被引:3,自引:0,他引:3  
通过对含有SiO2,ZrO2微粒复合电沉积的研究,在Cu合金表面分别获得了含量(原子数分数)为11.3% SiO2,5.31% ZrO2微粒的Ni基复合镀层.通过在800℃、900℃条件下的高温氧化和热震循环试验,研究了这种复合镀镍层的高温氧化性能和界面结合特性.结果表明:经过40?h的高温氧化,2种复合镀镍层的抗氧化性能均达到抗氧化级,而且含SiO2微粒的复合镀镍层的抗氧化性能优于含ZrO2微粒的复合镀镍层;经过55次冷热循环,含SiO2微粒的复合镀镍层与铜基体结合良好.  相似文献   

19.
This work is a continuation of the previous article and it focuses on low solar activity and modeling effort. NeQuick model uses Epstein layer formalism to model each part of the profile. We study the diurnal and seasonal variations of B2bot, ΔB2 (B2best − B2NeQuick2) and R (B2best/B2NeQuick 2) at Hainan station during low solar activity. The results show it is possible to improve the B2bot parameter of the NeQuick model at that region during low solar activity. Then, we use a function ?(t) with LT in different seasons to correct the B2bot formula of NeQuick 2. The correction shows that (1) By the correction formula, the B2bot of NeQuick is improved. The maximum standard deviation is improved for 9 km. (2) The correction formula is more effective in summer than in equinox and winter and performs better during early morning hours than during the rest of the day.  相似文献   

20.
The height, hmF2, and the electron density, NmF2, of the F2 peak are key model parameters to characterize the actual state of the ionosphere. These parameters, or alternatively the propagation factor, M3000F2, and the critical frequency, foF2, of the F2 peak, which are related to hmF2 and NmF2, are used to anchor the electron density vertical profile computed with different models such as the International Reference Ionosphere ( Bilitza, 2002), as well as for radio propagation forecast purposes. Long time series of these parameters only exist in an inhomogeneous distribution of points over the surface of Earth, where dedicated instruments (typically ionosondes) have been working for many years. A commonly used procedure for representing median values of the aforementioned parameters all over the globe is the one recommended by the ITU-R ( ITU-R, 1997). This procedure, known as the Jones and Gallet mapping technique, was based on ionosondes measurements gathered from 1954 to 1958 by a global network of around 150 ionospheric stations (  and ). Even though several decades have passed since the development of that innovative work, only few efforts have been dedicated to establish a new mapping technique for computing hmF2 and NmF2 median values at global scale or to improve the old method using the increased observational database. Therefore, in this work three different procedures to describe the daily and global behavior of the height of the F2 peak are presented. All of them represent a different and simplified method to estimate hmF2 and are based on different mathematical expressions. The advantages and disadvantages of these three techniques are analyzed, leading to the conclusion that the recommended procedure to represent hmF2 is best characterized by a Spherical Harmonics expansion of degree and order equal to 15, since the differences between the hmF2 values obtained with the Jones and Gallet technique and those obtained using the abovementioned procedure are of only 1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号