首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
This study presents a statistical analysis of GPS L-band scintillation with data observed from July 2008 to March 2012 at the northern crest of equatorial anomaly stations in Guangzhou and Shenzhen of South China. The variations of the scintillation with local time, season, solar activity and duration of scintillation patches were investigated. The relationship between the scintillation and TEC depletion was also reported. Our results revealed that GPS scintillation occurred from 19:30 LT (pre-midnight) to 03:00 LT (post-midnight). During quiet solar activity years, the scintillation was only observed in pre-midnight hours of equinox months and patches durations were mostly less than 60 min. During high solar activity years, more scintillation occurred in the pre-midnight hours of equinox and winter months; and GPS scintillation started to occur in the post-midnight hours of summer and winter. The duration of scintillation patches extended to 180 min in high solar activity years. Solar activity had a larger effect to strong scintillations (S4 > 0.6) than to weak scintillations (0.6 ? S4 > 0.2). Strong scintillations were accompanied by TEC depletion especially in equinox months. We also discussed the relationship between TEC depletion and plasma bubble.  相似文献   

2.
The Indian sector encompasses the equatorial and low latitude regions where the ionosphere is highly dynamic and is characterized by the equatorial ionization anomaly (EIA) resulting in large latitudinal electron density gradients causing errors and uncertainties in the estimation of range delays in satellite based navigation systems. The diurnal and seasonal variations of standard deviations in the TEC data measured during the low sunspot period 2004–2005 at 10 different Indian stations located from equator to the anomaly crest region and beyond are examined and presented. The day-to-day variability in TEC is found to be lowest at the equatorial station and increases with latitude up to the crest region of EIA and decreases beyond.  相似文献   

3.
The diurnal variations in total electron content (TEC) in the equatorial ionisation anomaly (EIA) region are not always represented by two crests on both sides of the magnetic equator. Sometimes, only an obvious single crest is evident at equatorial and low latitudes. In this paper, we focus on analysis of the morphological features of the single crest phenomenon in TEC around 120°E longitude during geomagnetic quiet days (Kp < 4). The variations in TEC are also compared with morphological parameters (foF2 and hmF2) derived from the International Reference Ionosphere extended to Plasmasphere (IRI–Plas) model. Our results show that the single crest phenomenon occurs mainly on days with extremely low solar activity, while the corresponding F2 layer critical frequency showed obvious asymmetry, or even only a single peak.  相似文献   

4.
This paper reports a study on the relationship between ionospheric total electron content (TEC) over East Asia and the tropospheric circulation around the Qinghai-Tibet Plateau. Ionospheric TEC over East Asia are obtained from 25 observatories during 1996–2004. By applying a partial correlation method which can eliminate the influences of solar and geomagnetic activities, we find no significant correlation between TEC and the Asian zonal circulation index (Iz), but find a positive correlation between the day-to-day variability of TEC and Iz. We suggest that the positive correlation is closely related with the topography of the Qinghai-Tibet Plateau. The dynamical effect on airflow of the plateau can generate vortexes, and the vortexes may continuously excite internal gravity waves (IGWs) which transmit up to the ionosphere and cause regional wave disturbances. This study gives evidence for the dynamical mechanism of ionosphere–troposphere coupling and shows the importance of the Qinghai-Tibet Plateau in the ionosphere–troposphere coupling over East Asia.  相似文献   

5.
The dispersive nature of the ionosphere makes it possible to measure its total electron content (TEC). Thus Global Positioning System, which uses dual-frequency radio signals, is an ideal system to measure TEC. When data from an ionosonde situated in polar region was observed, the height of an approximated thin shell of electrons (shell height) used in GPS studies was seen not to be fixed but rather changing with time. Here we introduce a new method in which we included the varying shell heights derived from the ionosonde to map the slant total electron content from GPS to obtain a more precise vertical total electron content of the ionosphere contrary to some previous methods which used fixed shell heights. In this paper we also compared the ionosonde derived TEC with the GPS derived vertical TEC (vTEC) values. These GPS vTEC values were obtained from GPS slant TEC (sTEC) measurements using both fixed shell height and varying shell heights (from ionosonde measurements). For the polar regions, the varying shell height approach produced better results than the fixed shell height and compared to exponential function, Chapman function seems to be a better function to model the topside ionosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号