首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
During the first 3 years of operation the Gamma-Ray Imaging Detector onboard the AGILE satellite detected several blazars in a high γ-ray activity: 3C 279, 3C 454.3, PKS 1510-089, S5 0716+714, 3C 273, W Comae, Mrk 421, PKS 0537-441 and 4C +21.35. Thanks to the rapid dissemination of our alerts, we were able to obtain multiwavelength data from other observatories such as Spitzer, Swift, RXTE, Suzaku, INTEGRAL, MAGIC, VERITAS, and ARGO as well as radio-to-optical coverage by means of the GASP Project of the WEBT and the REM Telescope. This large multifrequency coverage gave us the opportunity to study the variability correlations between the emission at different frequencies and to obtain simultaneous Spectral Energy Distributions of these sources from radio to γ-ray energy bands, investigating the different mechanisms responsible for their emission and uncovering in some cases a more complex behavior with respect to the standard models. We present a review of the most interesting AGILE results on these γ-ray blazars and their multifrequency data.  相似文献   

2.
A strong X-ray emission is one of the defining signatures of nuclear activity in galaxies. According to the Unified Model for Active Galactic Nuclei (AGN), both the X-ray radiation and the prominent broad emission lines, characterizing the optical and UV spectra of Type 1 AGNs, are originated in the innermost regions of the sources, close to the Super Massive Black Holes (SMBH), which power the central engine. Since the emission is concentrated in a very compact region (with typical size r?0.1r?0.1 pc) and it is not possible to obtain resolved images of the source, spectroscopic studies of this radiation represent the only valuable key to constrain the physical properties of matter and its structure in the center of active galaxies. Based on previous studies on the physics of the Broad Line Region (BLR) and on the X-ray spectra of broad (FWHMHβ ? 2000 km s−1) and narrow line (1000 km s−1 ?FWHMHβ ? 2000 km s−1) emitting objects, it has been observed that the kinematic and ionization properties of matter close to the SMBHs are related together, and, in particular, that ionization is higher in narrow line sources. Here we report on the study of the optical and X-ray spectra of a sample of Type 1 AGNs, selected from the Sloan Digital Sky Survey (SDSS) database, within an upper redshift limit of z=0.35z=0.35, and detected at X-ray energies. We present analysis of the broad emission line fluxes and profiles, as well as the properties of the X-ray continuum and Fe Kα emission and we use these parameters to assess the consistency of our current AGN understanding.  相似文献   

3.
We investigate the variability of the continuum and broad lines in QSO spectra (particularly in the Hβ line and continuum at λ 5100 Å) caused by microlensing of a diffuse massive structure (like an open star cluster). We modeled the continuum and line emitting region and simulate a lensing event by a star cluster located in an intervening galaxy. Such a type of microlensing event can have a significant influence on magnification and centroid shift of the broad lines and continuum source. We explore relationships between the continuum and broad line flux variability during the microlensing event.  相似文献   

4.
We have analysed a sample of 328 time-integrated GRB prompt emission spectra taken via the Konus instrument on board the US GGS-Wind spacecraft between 2002 and 2004 using a couple of two-components models, Cut-off Power Law (CPL) + Power Law (PL) and blackbody (BB) + PL. The spectra show clear deviation from the Band function. The PL term is interpreted as the low energy tail of a nonthermal emission mechanism. The distributions of corresponding index β give values β < −2/3 consistent with synchrotron and synchrotron self-Compton mechanisms. The distribution of low energy index α associated with the CPL term shows clear discordance with synchrotron models for 31.4% of the analysed GRBs with values exceeding that for the line of death, α = −2/3. Then, a set of nonthermal radiation mechanisms producing harder slopes, i.e., α > −2/3, are presented and discussed. For the remaining majority (68.6%) of GRBs with CPL index α < −2/3, we show that optically thin synchrotron produced by a power law electron distribution of type, N(γ) ∼ γp, γ1 < γ < γ2, for finite energy range (γ2 ≠ ∞) is a likely emission mechanism with α ∼−(p + 1)/2 in the frequency range ν1 ? ν ? ν2 (where ν2 = η2ν1 with η = γ2/γ1), such that for p > 1/3, one gets α < −2/3. We also show that corresponding spectra in terms of Fν and νFν functions are peaked around frequency ν2 instead of ν1, respectively for p < 1 and p < 3. Besides, thermal emission is examined taking a single Planck function for fitting the low energy range. It can be interpreted as an early emission from the GRB fireball photosphere with observed mean temperature, kT′ ∼ 16.8 keV. Furthermore, we have performed a statistical comparison between the CPL + PL and BB + PL models finding comparable χ2-values for an important fraction of GRBs, which makes it difficult to distinguish which model and specific radiation mechanism (possible thermal or nonthermal γ-ray emissions) are best suitable for describing the reported data. Therefore, additional information for those bursts, such as γ-ray polarization, would be highly desirable in future determinations of GRBs observational data.  相似文献   

5.
The GeV observations by Fermi-LAT give us the opportunity to characterize the high-energy emission (100 MeV–300 GeV) variability properties of the BL Lac object S5 0716+714. In this study, we performed flux and spectral analysis of more than 3 year long (August 2008 to April 2012) Fermi-LAT data of the source. During this period, the source exhibits two different modes of flux variability with characteristic timescales of ∼75 and ∼140 days, respectively. We also notice that the flux variations are characterized by a weak spectral hardening. The GeV spectrum of the source shows a clear deviation from a simple power law, and is better explained by a broken power law. Similar to other bright Fermi blazars, the break energy does not vary with the source flux during the different activity states. We discuss several possible scenarios to explain the observed spectral break.  相似文献   

6.
We explore the capabilities of the future space science mission IXO (International X-ray Observatory) for obtaining cosmological redshifts of distant Active Galactic Nuclei (AGNs) using the X-ray data only. We first find in which regions of the X-ray luminosity (LX) versus redshift (z) plane the weak but ubiquitous Fe Kα narrow emission line can deliver an accurate redshift (δz < 5%) as a function of exposure time, using a CCD-based Wide Field Imager (IXO/WFI) as the one baselined for IXO. Down to a 2–10 keV X-ray flux of 10−14 erg cm−2 s−1 IXO/WFI exposures of 100 ks, 300 ks and 1 Ms will deliver 20%, 40% and 60% of the redshifts. This means that in a typical 18′ × 18′ IXO/WFI field of view, 4, 10 and 25 redshifts will be obtained for free from the X-ray data alone, spanning a wide range up to z ∼ 2–3 and fairly sampling the real distribution. Measuring redshifts of fainter sources will indeed need spectroscopy at other wavebands.  相似文献   

7.
The question of the origin of cosmic rays and other questions of astroparticle and particle physics can be addressed with indirect air-shower observations above 10 TeV primary energy. We propose to explore the cosmic ray and γ-ray sky (accelerator sky) in the energy range from 10 TeV to 1 EeV with the new ground-based large-area wide angle (ΔΩ ∼ 0.85 sterad) air-shower detector HiSCORE (Hundredi Square-km Cosmic ORigin Explorer). The HiSCORE detector is based on non-imaging air-shower Cherenkov light-front sampling using an array of light-collecting stations. A full detector simulation and basic reconstruction algorithms have been used to assess the performance of HiSCORE. First prototype studies for different hardware components of the detector array have been carried out. The resulting sensitivity of HiSCORE to γ-rays will be comparable to CTA at 50 TeV and will extend the sensitive energy range for γ-rays up to the PeV regime. HiSCORE will also be sensitive to charged cosmic rays between 100 TeV and 1 EeV.  相似文献   

8.
Preliminary results of a systematic study on the simultaneous optical-to-X-rays variability in blazars are presented. Data from Swift observations of four bright γ-ray blazars (3C 279, ON +231, S5 0716+71, PKS 2155−304) have been analyzed, compared, and discussed. Specifically, 3C 279 shows a variable flattening in the low energy part of the X-ray spectrum that appears to be confined in a specific X-ray vs optical/UV fluxes region. Some implications are shortly analyzed.  相似文献   

9.
We present the results of analysis XMM-Newton data of galaxy cluster CL0016+16, which enables us to trace X-ray emission and temperature profile up to the virial radius. We obtained similar results using three different backgrounds. We checked the possibility of detection of cluster emission up to the virial radius with XMM-Newton data with hydrodynamical cosmology simulation from the Adaptive Mesh Refinement technique, code RAMSES by Teyssier [Teyssier, R. Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. A&A 385, 337, 2002], convolution with XMM-Newton and the data base of the spectra by Sauvageot et al. [Sauvageot, J.-L., Belsole, E., Pratt, G.W. The late merging phase of a galaxy cluster: XMM EPIC observations of A 3266. A&A, 444, 673, 2005]. For the first time we were able to compute the mass of CL0016 up to R200, we found, assuming hydrostatic equilibrium framework, M200 = (1.15 ± 0.11) × 1015M.  相似文献   

10.
In this work, we study the short term flaring activity from the high synchrotron peaked blazar Mrk 501 detected by the FACT and H.E.S.S. telescopes in the energy range 2–20 TeV during June 23–24, 2014 (MJD 56831.86–56831.94). We revisit this major TeV flare of the source in the context of near simultaneous multi-wavelength observations of γ–rays in MeV-GeV regime with Fermi-LAT, soft X-rays in 0.3–10 keV range with Swift-XRT, hard X-rays in 10–20 keV and 15–50 keV bands with MAXI and Swift-BAT respectively, UV-Optical with Swift-UVOT and 15 GHz radio with OVRO telescope. We have performed a detailed temporal and spectral analysis of the data from Fermi-LAT, Swift-XRT and Swift-UVOT during the period June 15–30, 2014 (MJD 56823–56838). Near simultaneous archival data available from Swift-BAT, MAXI and OVRO telescope along with the V-band optical polarization measurements from SPOL observatory are also used in the study of giant TeV flare of Mrk 501 detected by the FACT and H.E.S.S. telescopes. No significant change in the multi-wavelength emission from radio to high energy γ–rays during the TeV flaring activity of Mrk 501 is observed except variation in soft X-rays. The varying soft X-ray emission is found to be correlated with the γ–ray emission at TeV energies during the flaring activity of the source. The soft X-ray photon spectral index is observed to be anti-correlated with the integral flux showing harder-when-brighter behavior. An average value of 4.5% for V-band optical polarization is obtained during the above period whereas the corresponding electric vector position angle changes significantly. We have used the minimum variability timescale from the H.E.S.S. observations to estimate the Doppler factor of the emission region which is found to be consistent with the previous studies of the source.  相似文献   

11.
Nearby pulsars B0656+14 and Geminga were proposed in the literature as the main sources of cosmic-ray positrons observed near Earth above 10 GeV. B0656+14 has comparable distance from Earth, similar magnetic field and period of Geminga. However, observations in the R and I bands indicate the presence of a disk of approximately 10−4 M around B0656+14. Radio and pulsed γ-ray flux observations from this pulsar are also consistent with supernova fallback material and disk entering the light cylinder and partially quenching the development of electromagnetic showers in the magnetosphere. If this is the case, B0656+14 has unlikely given any contribution to e+ and e observed near Earth. Absolute flux measurements and the level of anisotropy in the high energy electron and positron arrival directions above 50 GeV will help in revealing if none, one of both nearby pulsars are sources of these particles observed near Earth.  相似文献   

12.
We present a Chandra observation of the H II region RCW89. The nebula lies 10′ north from the central pulsar PSR B1509–58, and it has been suggested that the nebula is irradiated by the pulsar jet. We performed a spectral analysis of the seven brightest emitting regions aligned in a horse-shoe like shape, and found that the temperature of the knots increases along the horse-shoe in the clockwise direction, while, in contrast, the ionization parameter net decreases. This result implies that RCW89 was heated in sequence. We examined the energy budget assuming that RCW89 is powered by the pulsar jet. The rate of energy injection into RCW89 by the jet was estimated from the synchrotron radiation flux. We obtained a heating time-scale of 1400 yr, which is consistent with the pulsar characteristic age of 1700 yr. To explain the temperature gradient, we discuss the cooling process for plasma clouds in RCW89. We argue that the plasma clumps can be cooled down by the adiabatic expansion within 250 yr, and form the temperature gradient reflecting the sequential heating by the precessing pulsar jet.  相似文献   

13.
The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV–3 TeV is presented. The angular resolution of the instrument, 1–2° at Eγ ∼ 100 MeV and ∼0.01° at Eγ > 100 GeV, its energy resolution ∼1% at Eγ > 100 GeV, and the proton rejection factor ∼106 are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.  相似文献   

14.
We consider a relativistically moving blob consisting of an isotropic electron distribution that Compton-scatters photons from an external isotropic radiation field. We compute the resulting beaming pattern, i.e. the distribution of the scattered photons, in the blob frame as well as in the observer’s frame by using the full Klein–Nishina cross section and the exact incident photon distribution. In the Thomson regime the comparison of our approach with Dermer (1995) results in concurrent characteristics but different absolute number of the scattered photons by a factor of fcorr = 3.09. Additionally, our calculation yields a slightly lower boost factor which varies the more from the corresponding value in Dermer (1995) the higher the spectral index p of the electron distribution gets.  相似文献   

15.
We address the problem of interacting relativistic current sheets in self-consistent kinetic plasma simulations within the framework of the Particle-In-Cell model. The interaction is enforced in head-on collisions of up to 10 current sheets at relativistic bulk speeds. The simulations are motivated by the general problem of Poynting flux dissipation in ‘striped wind’ configurations presumably governing the relativistic outflows pervasive in pulsar winds and gamma-ray bursts. We identify the generation of non-thermal particles and formation of a stable power-law shape in the particle energy distributions f(γ) dγ ∝ γs dγ. In 1D, a spectral index s ∼ 2 is observed and attributed to a stochastic Fermi-type acceleration mechanism. In 2D, the generic index of s ∼ 3–4 is retained as in previous simulations of individual current sheets. Whereas in 2D the high energy cut-off is constrained by the limited dissipation of magnetic energy, in 1D the process converts the bulk motion of current sheets towards directed particle momentum of an exclusive class of non-thermal particles.  相似文献   

16.
In this study, we investigate how restrictive the γ-ray emission from the Galactic center region, as seen by HESS and other Cherenkov air shower arrays, is against various models for cosmic ray injection. We derive diffusion coefficients which fit the observed spatial scales of diffuse γ-ray emission from the extended emission associated with the molecular clouds SgrA, B and C. Using these diffusion coefficients, we then obtain a limit for time scale of assumed recent proton acceleration near the SMBH, as the spatial size of SgrA in VHE γ-rays has to be consistent with the observed unresolved HESS point source size at this position. The signal from this hadronic component may be mixed with the expected VHE inverse Compton emission from the nearby unresolved pulsar wind nebula.  相似文献   

17.
Radio and gamma-ray emissions in Active Galactic Nuclei (AGNs) are both related to the presence of relativistic particles in jets. With the advent of the Fermi Large Area Telescope (LAT), and thanks to its large sensitivity up to several GeV, many observational results are changing our understanding of these phenomena. BL Lac objects, which made up only a fraction of the known extragalactic gamma-ray source population before Fermi, have now become the most abundant class. However, since they are relatively weak radio sources, most of them are poorly known as far as their parsec scale structure and multi-wavelength properties are concerned. For this reason, we have selected a complete sample of 42 low redshift BL Lacs (independently of their gamma-ray properties) to study with a multi-wavelength (radio, optical, X-ray, gamma-ray) approach. Here, we present results and images of sources in the sample (most of which have never been observed before), using new VLBA observations at 8 and 15 GHz. Beyond this sample of BL Lacs, the population of gamma-ray AGNs has also dramatically enlarged in the Fermi era, permitting us to discuss the presence of a correlation between radio and gamma-ray properties with improved statistical significance. We explore the radio-gamma relation with several hundreds sources and using both simultaneous and archival radio data, thus tackling the impact of time variability.  相似文献   

18.
A current serious limitation on the studies of solar energetic particle (SEP) events is that their properties in the inner heliosphere are studied only through in situ spacecraft observations. Our understanding of spatial distributions and temporal variations of SEP events has come through statistical studies of many such events over several solar cycles. In contrast, flare SEPs in the solar corona can be imaged through their radiative and collisional interactions with solar fields and particles. We suggest that the heliospheric SEPs may also interact with heliospheric particles and fields to produce signatures which can be remotely observed and imaged. A challenge with any such candidate signature is to separate it from that of flare SEPs. The optimum case for imaging high-energy (E > 100 MeV) heliospheric protons may be the emission of π0-decay γ-rays following proton collisions with solar wind (SW) ions. In the case of E > 1 MeV electrons, gyrosynchrotron radio emission may be the most readily detectible remote signal. In both cases we may already have observed one or two such events. Another radiative signature from nonthermal particles may be resonant transition radiation, which has likely already been observed from solar flare electrons. We discuss energetic neutrons as another possible remote signature, but we rule out γ-ray line and 0.511 MeV positron annihilation emission as observable signatures of heliospheric energetic ions. We are already acquiring global signatures of large inner-heliospheric SW density features and of heliosheath interactions between the SW and interstellar neutral ions. By finding an appropriate observable signature of remote heliospheric SEPs, we could supplement the in situ observations with global maps of energetic SEP events to provide a comprehensive view of SEP events.  相似文献   

19.
We present medium resolution near-infrared host galaxy spectra of low redshift quasars, PG 0844+3490844+349 (z = 0.064), PG 1226+0231226+023 (z = 0.158), and PG 1426+0151426+015 (z = 0.086). The observations were done by using the Infrared Camera and Spectrograph (IRCS) at the Subaru 8.2 m telescope. The full width at half maximum of the point spread function was about 0.3 arcsec by operations of an adaptive optics system, which can effectively resolve the quasar spectra from the host galaxy spectra. We spent up to several hours per target and developed data reduction methods to reduce the systematic noises of the telluric emissions and absorptions. From the obtained spectra, we identified absorption features of Mg I (1.503 μm), Si I (1.589 μm) and CO (6-3) (1.619 μm), and measured the velocity dispersions of PG 0844+3490844+349 to be 132 ± 110 km s−1 and PG 1426+0151426+015 to be 264 ± 215 km s−1. By using an MBH–σMBHσ relation of elliptical galaxies, we derived the black hole (BH) mass of PG 0844+3490844+349, log(MBH/M)=7.7±5.5log(MBH/M)=7.7±5.5 and PG 1426+015,log(MBH/M)=9.0±7.51426+015,log(MBH/M)=9.0±7.5. These values are consistent with the BH mass values from broad emission lines with an assumption of a virial factor of 5.5.  相似文献   

20.
We present here new XMM-Newton observations of 3 relatively cool clusters at z ≈ 0.4, complemented by archival observations of 3 other clusters at similar redshift. We derived the MT and RT relations from the hydrostatic equation using an isothermal temperature distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号