首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nanosatellite BLITS (Ball Lens In The Space) is the first object designed as a passive, spherical retroreflector of the Luneburg type, dedicated for Satellite Laser Ranging (SLR). The optical response of BLITS has been measured by the Graz 2 kHz SLR station and compared with the response of the classical retroreflector arrays (RRA) of the Low Earth Orbiting satellites such as ERS-2 and Stella. This work demonstrates that the optical response of BLITS is flat and featureless, comparable with the signature of a point-source or a flat target, and suggests that this innovative design will deliver a higher normal point (NP) accuracy (2.55 mm) than any other SLR target currently in orbit. The high reflectivity of the glassy BLITS (about 60% of the return rate from the multi-reflector Stella) is found to be decreasing by about 30% per year, probably due to the solar irradiation. Detailed analysis of the reflective half-shell demonstrates that a high return rate of SLR measurements can be achieved regardless of the incident angle of the laser beam, thus making the spherical lens a perfect successor of the classical RRA panels mounted on active satellites such as CHAMP, GOCE and GRACE.  相似文献   

2.
The nanosatellite BLITS (Ball Lens In The Space) demonstrates a successful design of the new spherical lens type satellite for Satellite Laser Ranging (SLR). The spin parameters of the satellite were calculated from more than 1000 days of SLR data collected from 6 High Repetition Rate (HRR) systems: Beijing, Changchun, Graz, Herstmonceux, Potsdam, Shanghai.  相似文献   

3.
The Graz 2 kHz Satellite Laser Ranging (SLR) measurements allow determination of the spin axis orientation of the geodetic satellite Ajisai. The high repetition rate of the laser makes it possible to determine the epoch time when the laser is pointing directly between two corner cube reflector (CCR) rings of the satellite. Identification of many such events during a few (up to 3) consecutive passes allows to state the satellite orientation in the celestial coordinate system. Six years of 2 kHz SLR data (October 2003–October 2009) delivered 331 orientation values which clearly show precession of the axis along a cone centered at 14h56m2.8s in right ascension and 88.512° in declination (J2000.0 celestial reference frame) and with an half-aperture angle θ of 1.405°. The spin axis precesses with a period of 117 days, which is equal to the period of the right ascension of the ascending node of Ajisai’s orbit. We present a model of the axis precession which allows prediction of the satellite orientation – necessary for the envisaged laser time transfer via Ajisai mirrors.  相似文献   

4.
Satellite Laser Ranging (SLR) is a powerful and efficient technique to measure spin parameters of satellites equipped with corner cube reflectors. We obtained spin period determination of the satellite AJISAI from SLR data only: 17246 pass-by-pass estimates from standard 1–15 Hz SLR data (14/Aug/1986–30/Dec/2008) and 1444 pass-by-pass estimates (9/Oct/2003–30/Dec/2008) from data of the first 2 kHz SLR system from Graz, Austria. A continuous history of the slowing down of AJISAI spin is derived from frequency analysis, and corrected for the apparent effects. The apparent corrections, elaborated here, allowed very accurate determination of AJISAI initial spin period: 1.4855 ± 0.0007 [s]. The paper identifies also non-gravitational effects as a source of the periodical changes in the rate of slowing down of the satellite.  相似文献   

5.
The high repetition rate Satellite Laser Ranging (SLR) system developed in Graz, Austria, measures ranges to the High Earth Orbiting satellites Etalon-1 and Etalon-2 with the millimeter accuracy. The 2 kHz repetition rate of the laser and the relatively high return rates allow to use the SLR data to calculate the spin parameters of the Etalon satellites. The analysis of the 10 years (October 2003–September 2013) of the SLR data gives trends of the spin axes orientation (J2000 Inertial Reference Frame):  相似文献   

6.
The design of the retroreflector array (RRA) of the fast spinning Experimental Geodetic Satellite (Ajisai) allows to determine orientation of its spin axis by means of frequency analysis. Moving spectral analysis (MSA) of the simulated Satellite Laser Ranging (SLR) data gives information about frequencies which can be obtained for the whole range of the incident angle between the laser beam vector and the spin axis of the spacecraft. This frequency signal changes as the incident laser beam crosses consecutive rings of the RRA.  相似文献   

7.
Satellite Laser Ranging (SLR) measurements contain information about the spin parameters of the fully passive, geodetic satellites. In this paper we spectrally analyze the SLR data of 5 geodetic satellites placed on the Low Earth Orbits: GFZ-1, WESTPAC, Larets, Starlette, Stella, and successfully retrieve the frequency signal from Larets and Stella only. The obtained signals indicate an exponential increase of the spin period of Larets: T = 0.860499·exp(0.0197066·D) [s], and Stella: T = 13.5582·exp(0.00431232·D) [s], where D is in days since launch. The initial spin periods calculated from the first month of the SLR observations are: Larets: Tinitial = 0.8239 s, Stella: Tinitial = 13.2048 s. Analysis of the apparent effects indicates the counter-clockwise spin direction of the satellites. The twice more heavy Stella lost its rotational energy more than four times slower than Larets. Fitting the spin model to the observed spin trends allows determination of the spin axis orientation evolution for Larets and Stella before their rotational period becomes equal to the orbital period.  相似文献   

8.
ETALON spin period determination from kHz SLR data   总被引:1,自引:1,他引:0  
Using kHz Satellite LASER Ranging (SLR) data of the SLR station Graz only, we determined the spin periods of the two ETALON satellites – launched into high orbits of about 20,000 km – and their spin period increase during 3 years. The determined spin period values and spin period increase rates at 2004-01-01 are: TET1 = 63 s + 0.484 s/year, and TET2 = 65.5 s + 0.401 s/year.  相似文献   

9.
Satellite Laser Ranging (SLR) is a powerful technique able to measure spin rate and spin axis orientation of the fully passive, geodetic satellites. This work presents results of the spin determination of LARES – a new satellite for testing General Relativity. 529 SLR passes measured between February 17 and June 9, 2012, were spectrally analyzed. Our results indicate that the initial spin frequency of LARES is f0 = 86.906 mHz (RMS = 0.539 mHz). A new method for spin axis determination, developed for this analysis, gives orientation of the axis at RA = 12h22m48s (RMS = 49m), Dec = −70.4° (RMS = 5.2°) (J2000.0 celestial reference frame), and the clockwise (CW) spin direction. The half-life period of the satellite’s spin is 214.924 days and indicates fast slowing down of the spacecraft.  相似文献   

10.
Satellite Laser Ranging (SLR) stations measure distance to the satellites equipped with Corner Cube Reflectors (CCRs). These range measurements contain information about spin parameters of the spacecraft. In this paper we present results of spin period determination of two passive satellites from SLR data only: 10 years of LAGEOS-1 (10426 values), and 15 years of LAGEOS-2 (15580 values). The measurements have been made by standard 10 Hz SLR systems and the first 2 kHz SLR system from Graz (Austria). The obtained data allowed calculation of the initial spin period of the satellites: 0.61 s for LAGEOS-1 and 0.906 s for LAGEOS-2. Long time series of the spin period values show that the satellite’s slowing down rate is not constant but is oscillating with a period of 846 days for LAGEOS-1 and 578 days for LAGEOS-2. The results presented here definitely prove that the SLR is a very efficient technique able to measure spin period of the geodetic satellites.  相似文献   

11.
We present results for the global elastic parameters h2 and l2 derived from the analysis of Satellite Laser Ranging (SLR) data. SLR data for the two satellites LAGEOS 1 and LAGEOS 2 observed during 2.5 years from January 3, 2005 until July 1, 2007 with 18 globally distributed ground stations were analysed using different approaches. The analysis was done separately for the two satellites and approaches to estimate the two elastic parameters independently and together were performed. We do a sequential analysis and study the stability of the estimates as a function of length of the data set used. The adjusted final values for h2 equal to 0.6151 ± 0.0008 and 0.6152 ± 0.0008, and those for l2 equal to 0.0886 ± 0.0003 and 0.0881 ± 0.0003 for LAGEOS 1 and LAGEOS 2 tracking data are compared to other independently derived estimates. These parameters and their errors achieve stability at about the 24 and 27 month time interval for h2 and l2, respectively.  相似文献   

12.
In this paper we present results for the global elastic parameters: Love number h2 and Shida number l2 derived from the analysis of Satellite Laser Ranging (SLR) data. SLR data for the two low satellites STELLA (H = 800 km) and STARLETTE (H = 810 km) observed during 2.5 years from January 3, 2005 until July 1, 2007 with 18 globally distributed ground stations were analyzed. The analysis was done separately for the two satellites. We do a sequential analysis and study the stability and convergence of the estimates as a function of length of the data set used.  相似文献   

13.
The Satellite Laser Ranging (SLR) technology is used to accurately determine the position of space objects equipped with so-called retro-reflectors or retro-reflector arrays (RRA). This type of measurement allows to measure the range to the spacecraft with high precision, which leads to determination of very accurate orbits for these targets. Non-active spacecraft, which are not attitude controlled any longer, tend to start to spin or tumble under influence of the external and internal torques and forces.If the return signal is measured for a non-spherical non-active rotating object, the signal in the range residuals with respect to the reference orbit is more complex. For rotating objects the return signal shows an oscillating pattern or patterns caused by the RRA moving around the satellite’s centre of mass. This behaviour is projected onto the radial component measured by the SLR.In our work, we demonstrate how the SLR ranging technique from one sensor to a satellite equipped with a RRA can be used to precisely determine its spin motion during one passage. Multiple SLR measurements of one target over time allow to accurately monitor spin motion changes which can be further used for attitude predictions. We show our solutions of the spin motion determined for the non-active ESA satellite Envisat obtained from measurements acquired during years 2013–2015 by the Zimmerwald SLR station, Switzerland. All the necessary parameters are defined for our own so-called point-like model which describes the motion of a point in space around the satellite centre of mass.  相似文献   

14.
The positions and velocities of the four Satellite Laser Ranging (SLR) stations: Yarragadee (7090), Greenbelt (7105), Graz (7839) and Herstmonceux (7840) from 5-year (2001–2005) SLR data of low orbiting satellites (LEO): Ajisai, Starlette and Stella were determined. The orbits of these satellites were computed from the data provided by 20 SLR stations. All orbital computations were performed by means of NASA Goddard’s GEODYN-II program. The geocentric coordinates were transformed to the topocentric North–South, East–West and Vertical components in reference to ITRF2005. The influence of the number of normal points per orbital arc and the empirical acceleration coefficients on the quality of station coordinates was studied. To get standard deviation of the coordinates determination lower than 1 cm, the number of the normal points per site had to be greater than 50. The computed positions and velocities were compared to those derived from LAGEOS-1/LAGEOS-2 data. Three parameters were used for this comparison: station coordinates stability, differences from ITRF2005 positions and velocities. The stability of coordinates of LEO satellites is significantly worse (17.8 mm) than those of LAGEOS (7.6 mm), the better results are for Ajisai (15.4 mm) than for Starlette/Stella (20.4 mm). The difference in positions between the computed values and ITRF2005 were little bit worse for Starlette/Stella (6.6 mm) than for LAGEOS (4.6 mm), the results for Ajisai were five times worse (29.7 mm) probably due to center of mass correction of this satellite. The station velocities with some exceptions were on the same level (≈1 mm/year) for all satellites. The results presented in this work show that results from Starlette/Stella are better than those from Ajisai for station coordinates determination. We can applied the data from LEO satellites, especially Starlette and Stella for determination of the SLR station coordinates but with two times lower accuracy than when using LAGEOS data.  相似文献   

15.
To investigate the precursory signature of earthquakes on low frequency (LF) signal propagation, six earthquakes, having magnitude greater than equal to 6.5 and depth less than equal to 30 km, are being studied. The base line level of 40 kHz signal, transmitted from JJY station, Japan, is analysed with respect to Vd statistical parameter. Results show that the Vd parameter values starts fluctuating from its ambient levels before and during the days of the earthquakes, with significant variation starting 1–3 days prior to the earthquake concerned. This present study is an approach for identifying the precursory signatures of earthquakes on LF signal propagation using a new methodology with Vd parameter.  相似文献   

16.
We have conducted a survey for faint quasars to B < 24.5, z < 2.1 based on archival high-latitude Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) images covering 0.04 deg2 of the sky in three filters spanning 2300–9600 Å. Taking advantage of the superb 0.1″ resolution of WFPC2, we have developed an approach to select quasar candidates based on their morphology and position in multicolor space. We derive cumulative surface densities and compare them with our previous survey in the Groth–Westphal Strip and other faint quasar surveys that utilize very different selection approaches. In most cases the agreement with these surveys is good, however, we find approximately twice as many quasar candidates to B = 24.5 as the COMBO-17 survey. Although we are confident that our approach eliminates most contaminating stars and galaxies, spectroscopic follow-up will be required to determine the level of residual contamination and confirm or refute this excess.  相似文献   

17.
The intranuclear cascade model INCL4 has been shown to be very successful for describing, without adjustable parameters, a whole set of data for p-induced reactions in the 40 MeV–2 GeV energy range. In view of its possible application to cosmic ray interactions, the INCL4 code has been extended to the 2–15 GeV energy range, so covering a large part of the spectrum of the incident energy of the cosmic rays.  相似文献   

18.
Understanding the evolution of solar wind structures in the inner heliosphere as they approach the Earth is important to space weather prediction. From the in situ solar wind plasma and magnetic field measurements of Pioneer Venus Orbiter (PVO) at 0.72 AU (1979–1988), and of Wind/Advanced Composition Explorer (ACE) missions at 1 AU (1995–2004), we identify and characterize two major solar wind structures, stream interaction regions (SIRs) and interplanetary coronal mass ejections (ICMEs). The average percentage of SIRs occurring with shocks increases significantly from 3% to 24% as they evolve from 0.72 to 1 AU. The average occurrence rate, radial extent, and bulk velocity variation of SIRs do not change from 0.72 to 1 AU, while peak pressure and magnetic field strength both decrease with the radial evolution of SIRs. Within the 0.28 AU distance from the orbit of Venus to that of Earth, the average fraction of ICMEs with shocks increases from 49% to 66%, and the typical radial extent of ICMEs expands by about a fraction of 1.4, with peak pressure and magnetic field strength decreasing significantly. The mean occurrence rate and expansion velocity of ICMEs do not change from 0.72 to 1 AU.  相似文献   

19.
We present here new XMM-Newton observations of 3 relatively cool clusters at z ≈ 0.4, complemented by archival observations of 3 other clusters at similar redshift. We derived the MT and RT relations from the hydrostatic equation using an isothermal temperature distribution.  相似文献   

20.
We investigate the intra-annual variations of globally averaged thermospheric density at 400 km altitude from 1996 to 2006 by using Artificial Neural Network Method (ANNM). The results indicate that thermospheric density is governed by solar activity, and the absolute error of our model is 13.67%, less than NRLMSISE-00 model. Fourier representation can catch the intra-annual variations more accurately than NRLMSISE-00 model and JB2008 model especially during 2002. We find that the Autumn maximum is slightly greater than Spring maximum during solar minimum, while the reverse is correct during solar maximum. There is a strong linear relation between solar activity and the amplitude of annual/semiannual variations, and the correlation coefficients are 0.9534 and 0.9424, respectively. Moreover, the amplitude ratio of the annual to semiannual variation is about 1.3 averaged, and changes in different years, but it has little relation with solar activity. Besides that, the amplitude of annual variation is larger than semiannual variation during 1996 and 2006 except 1998 and 2000. The relative error of NRLMSISE-00 model is 14.95%, decreasing to 12.49% after revising, and the correlation coefficients between this empirical model and its improved results and the observation are 0.8185 and 0.9210, respectively. Finally, we suggest the revised version of MSIS series of model should use the Fourier representation to express the intra-annual variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号