首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Development overview of the revised NASA Ultra Long Duration Balloon   总被引:1,自引:0,他引:1  
The desire for longer duration stratospheric flights at constant float altitudes for heavy payloads has been the focus of the development of the National Aeronautics and Space Administration’s (NASA) Ultra Long Duration Balloon (ULDB) effort. Recent efforts have focused on ground testing and analysis to understand the previously observed issue of balloon deployment. A revised approach to the pumpkin balloon design has been tested through ground testing of model balloons and through two test flights. The design approach does not require foreshortening, and will significantly reduce the balloon handling during manufacture reducing the chances of inducing damage to the envelope. Successful ground testing of model balloons lead to the fabrication and test flight of a ∼176,000 m3 (∼6.2 MCF – Million Cubic Foot) balloon. Pre-flight analytical predictions predicted that the proposed flight balloon design to be stable and should fully deploy. This paper provides an overview of this first test flight of the revised Ultra Long Duration Balloon design which was a short domestic test flight from Ft. Sumner, NM, USA. This balloon fully deployed, but developed a leak under pressurization. After an extensive investigation to the cause of the leak, a second test flight balloon was fabricated. This ∼176,000 m3 (∼6.2 MCF) balloon was flown from Kiruna, Sweden in June of 2006. Flight results for both test flights, including flight performance are presented.  相似文献   

3.
The essential reason of the lobed-pumpkin shaped super-pressure balloon to withstand against the high pressure is that the local curvature of the balloon film is kept small. Recently, it has been found that the small local curvature can also be obtained if the balloon is covered by a diamond-shaped net with a vertically elongated shape. The development of the super-pressure balloon using this method was started from a 3-m balloon with a polyethylene film covered by a net using Kevlar ropes. The ground inflation test showed the expected high burst pressure. Then, a 6-m and a 12-m balloon using a polyethylene film and a net using the Vectran were developed and stable deployment was checked through the ground inflation tests. The flight test of a 3000 m3 balloon was performed in 2013 and shown to resist a pressure of at least 400 Pa. In the future, after testing a new design to relax a possible stress concentration around the polar area, test flights of scaled balloons will be performed gradually enlarging their size. The goal is to launch a 300,000 m3 super-pressure balloon.  相似文献   

4.
We have observed cosmic-ray electrons from 10 to 1000 GeV by a long duration balloon flight using Polar Patrol Balloon (PPB) in Antarctica. The observation was carried out for 13 days at an altitude of 35 km in January 2004. The detector is an imaging calorimeter composed of scintillating-fiber belts and plastic scintillators inserted between lead plates. The geometrical factor of detector is about 600 cm2sr and the total thickness of lead absorber is 9 radiation lengths. The performance of the detector has been confirmed by the CERN-SPS beam test and also investigated by Monte-Carlo simulations. New telemetry system using a commercial satellite of iridium, power supply by solar batteries, and automatic level control using CPU have successfully been developed and operated during the flight. We have collected 5.7 × 103 events over 100 GeV including nearly 100 candidates of primary electrons.  相似文献   

5.
Cosmic-ray electrons have been observed in the energy region from 10 GeV to 1 TeV with the PPB-BETS by a long duration balloon flight using a Polar Patrol Balloon (PPB) in Antarctica. The observation was carried out for 13 days at an average altitude of 35 km in January 2004. The PPB-BETS detector is an imaging calorimeter composed of scintillating-fiber belts and plastic scintillators inserted between lead plates. In the study of cosmic-ray electrons, there have been some suggestions that high-energy electrons above 100 GeV are a powerful probe to identify nearby cosmic-ray sources and search for particle dark matter. In this paper, we present the energy spectrum of cosmic-ray electrons in the energy range from 100 GeV to 1 TeV at the top of atmosphere, and compare our spectrum with the results from other experiments.  相似文献   

6.
7.
Space flight has been shown to have many adverse effects on various systems throughout the body. Because the opportunity to place research animals on board a Space Shuttle or the International Space Station is infrequent, various techniques have been designed to simulate the effects of microgravity in Earth based laboratories. A commonly used technique is known as antiorthostatic suspension, also often referred to as hind limb suspension. In this technique the hind portion of the animal is raised so that its hind limbs are non-weight bearing. This places the animal in roughly a 30° head down tilt position. This results in cephalic fluid shifts similar to those seen in actual space flight. This technique has also been shown to mimic other physiological parameters that are affected during space flight. This study examined testicular tissue from rats subjected to a 7 day antiorthostatic suspension. This tissue was acquired through a tissue sharing program and some of the experimental animals were injected with Interleukin 1 receptor antagonist (IL-1ra) which was hoped to ameliorate some of the effects of antiorthostatic suspension. The injection of IL-1ra was not expected to have any effect on testicular tissue, however this tissue was included in the morphological and statistical analysis to conduct a more complete study. All tissues were embedded in paraffin, sectioned, and stained using standard H&E staining. The tissue was then qualitatively ranked according to the “health” of the seminiferous tubules. Our findings indicate that 7 days of antiorthostatic suspension had adverse effects on the tissue that comprises the walls of the seminiferous tubules. It has long been known that antiorthostatic suspension has deleterious effects on testicular tissue, however this research indicates that these effects occur much faster than indicated by previous researchers. This is a significant finding because it indicates that meaningful earth based studies in this area can be carried out in a shorter time span. This could result in more studies per year as well as saving money by avoiding longer than necessary animal suspensions. This is especially important as we enter an era when, without Space Shuttle, flight opportunities will become scarce. These antiorthostatic suspension studies indicate that space flight, even short duration spaceflight, may have harmful effects on the seminiferous tubules and blood-testis barrier of astronauts.  相似文献   

8.
An outstanding issue with aerospace workforce development is what should be done at the university level to attract and prepare undergraduates for an aerospace career. One approach adopted by many institutions is to lead students through the design and development of small payloads (less than about 500 grams) that can be carried up to high altitude (around 30 km) by a latex sounding balloon. This approach has been very successful in helping students to integrate their content knowledge with practical skills and to understand the end-to-end process of aerospace project development. Sounding balloons, however, are usually constrained in flight duration (∼30 min above 24 km) and payload weight, limiting the kinds investigations that are possible. Student built picosatellites, such as CubeSats, can be placed in low Earth orbit removing the flight duration constraint, but the delays between satellite development and launch can be years. Here, we present the inexpensive high altitude student platform (HASP) that is designed to carry at least eight student payloads at a time to an altitude of about 36 km with flight durations of 15–20 h using a small zero-pressure polyethylene film balloon. This platform provides a flight capability greater than sounding balloons and can be used to flight-test compact satellites, prototypes and other small payloads designed and built by students. The HASP includes a standard mechanical, power and communication interface for the student payload to simplify integration and allows the payloads to be fully exercised. HASP is lightweight, has simple mission requirements providing flexibility in the launch schedule, will provide a flight test opportunity at the end of each academic year.  相似文献   

9.
为了在运载器真实飞行前对栅格翼展开过程和系统力学性能进行考核,针对现有模拟试验方法不能有效模拟飞行工况栅格翼在气动力作用下展开过程及该过程对壳体和栅格翼的冲击的问题提出了一种等效试验方法,试验结果表明具有很好的可行性和有效性,为后续类似试验提供了有益的参考。  相似文献   

10.
为了在运载器真实飞行前对栅格翼展开过程和系统力学性能进行考核,针对现有模拟试验方法不能有效模拟飞行工况栅格翼在气动力作用下展开过程及该过程对壳体和栅格翼的冲击的问题提出了一种等效试验方法,试验结果表明具有很好的可行性和有效性,为后续类似试验提供了有益的参考。  相似文献   

11.
The lobes of the NASA ULDB pumpkin-shaped super-pressure balloons are made of a thin polymeric film that shows considerable time-dependent behaviour. A nonlinear viscoelastic model based on experimental measurements has been recently established for this film. This paper presents a simulation of the viscoelastic behaviour of ULDB balloons with the finite element software ABAQUS. First, the standard viscoelastic modelling capabilities available in ABAQUS are examined, but are found of limited accuracy even for the case of simple uniaxial creep tests on ULDB films. Then, a nonlinear viscoelastic constitutive model is implemented by means of a user-defined subroutine. This approach is verified by means of biaxial creep experiments on pressurized cylinders and is found to be accurate provided that the film anisotropy is also included in the model. A preliminary set of predictions for a single lobe of a ULDB is presented at the end of the paper. It indicates that time-dependent effects in a balloon structure can lead to significant stress redistribution and large increases in the transverse strains in the lobes.  相似文献   

12.
Water vapour concentration is one of the most important, yet one of the least known quantities of the mesosphere. Knowledge of water vapour concentration is the key to understanding many mesospheric processes, including the one that is primary focus of our investigation, Polar Mesospheric Clouds (PMC). The processes of formation and occurrence parameters of PMC constitute an interesting problem in their own right, but recent evidence had been provided which suggests that PMC are a critical indicator of climate change. In this context the feasibility of a low cost method of water vapour measurements using an instrument carried aloft by a sounding rocket has been examined and some of the results discussed. It is proposed to measure the strength of the 936nm water absorption line in a solar occultation configuration employing a CCD detector. This leads to the design of a small, low cost and low-mass instrument, which can be flown on a small rocket, of the type of the Orbital Sciences Corporation Viper 5. Alternatively the instrument can be flown as a “passenger” on larger rocket carrying other experiments. In either case flight costs are relatively low. Some performance simulations are presented showing that the instrument we have designed will be sufficiently sensitive to measure water vapor in concentrations that are expected at the summer mesopause, about 85 km height. Sufficient payload design work was carried out showing that the structural, thermal and electrical requirements for a flight on the Viper 5 rocket can be met and thus making the experiment feasible for a flight.  相似文献   

13.
The Unmanned Space Vehicle test flights will use a 7 m 1300 kg aircraft. The first three launches will take place at the Italian Space Agency ASI base in Trapani–Milo, Sicily, through a stratospheric balloon that will drop the aircraft at a predefined height. After free fall acceleration to transonic velocities, the parachute deployment will allow a safe splash down in the central Mediterranean Sea. The goal of this article is to show the preliminary analysis results for the first USV flight.We carried out a statistical study for the year 2000–2003, evaluating the typical summer and winter launch windows of the Trapani–Milo base.First, in the center Mediterranean, we define safe recovery areas. They cannot be reached during the balloon ascending phase so, after a sufficiently long floating part able to catch the open sea, the balloon will go down to the release height (24 km). The simulation foresees a 400,000 m3 balloon and 3 valves for the altitude transfer.A safe splash down must occur far enough from the nearest coast: the minimum distance is considered around 25 km. The vehicle should be released at a distance, from the nearest coast, greater than this minimum amount plus the USV model maximum horizontal translation, during its own trajectory from balloon separation to splash down. In this way we define safe release areas for some possible translations.Winter stratospheric winds are less stable. The winter average flight duration is 7 h and it is probably too long for the diurnal recovery requirement and its scheduled procedures.Comparing past stratospheric balloons flights and trajectories computed using measured meteorological data (analysis), with their predictions made using forecast models and soundings, we obtain the standard deviation of the trajectory forecast uncertainty at the balloon–aircraft separation. Two cases are taken into account: predictions made 24 and 6 h before the launch.Assuming a Gaussian latitudinal uncertainty distribution for the prediction 6 h before the launch, we are able to identify the forecast trajectories that have a probability greater than 97% to reach the safe release areas.Simulating the summer windows trajectories for the years from 2000 to 2003 and for the favorable ground wind days, we obtain the number of trajectories with the desired forecast probabilities.  相似文献   

14.
根据子午工程探空火箭电子和电场探测需求,设计了套筒式伸杆展开机构.通过电子伸杆和电场伸杆的结构方案设计、力学仿真分析,伸杆单项力学试验,伸杆与整箭的匹配力学试验以及伸杆飞行试验验证得出,该伸杆技术方案合理可行,伸杆总体构型、布局设计及结构方案设计满足科学探测各项技术指标的要求.   相似文献   

15.
In order to predict the flight parameters and to improve the life time of long duration super-pressure balloon, a research program on modelization and experimental simulation of the balloon envelope mechanical behavior is carried out.The balloon is a 10 m diameter type made with multilayer polymeric films and tapes. A facility was developed to measure, via a stereo-correlation system, the 3D displacement and the in plane solicitation strain of a 1.5 m diameter balloon envelope part in realistic flight conditions, i.e. pressure, temperature and loading at the sample boundaries. A time dependant non-linear Maxwell model of the polymeric material behavior was identified from uniaxial creep and relaxation tests and implemented in a Finite Elements code, simulating the sample tested in the facility. The Poisson ratio of the transparent and supple balloon film has been measured with an image correlation system.Experimental results are obtained both at room and in cold conditions (−60 °C) for various values of differential pressure.Vertical displacement and in plane 2D strain of apex part deduced from the numerical modeling are compared to experimental results.  相似文献   

16.
Preliminary results are reported for gamma ray observations of the galactic center region made during a 15 hour balloon flight from Alice Springs, Australia on April 18, 1979. The observations were carried out with the UCR double-scatter gamma-ray telescope at energies of 1 to 30 MeV. The observations are compatible with a galactic source of approximately equal brightness along the region 300°<ℓII<60°. The energy distribution joins smoothly to previous spark chamber results at energies above 30 MeV and to scintillator results below 1 MeV. It appears to be a combination of nuclear gamma ray lines superimposed on a bremsstrahlung spectrum with a power law (1.3±.7) × 10−3 E(1.7±.2). The 12C* line at 4.4 MeV appears to be present with a significance of about 16σ. The flux in the line is (6±3) × 10−4photons cm−2s−1rad−1. The oxygen line at 6.1 MeV does not seem to appear significantly above background.  相似文献   

17.
A directional detector for γ-ray astronomy has been developed to image sources in the energy range 0.1 to 5 MeV. An array of 35 gain stabilized bismuth germanate detectors, together with a coded aperture mask based on a Uniformly Redundant Array (URA), allows imaging in 4° square sky bins over a 16° X 24° field-of-view. The position of a strong point source, such as the Crab Nebula, can be determined to within ?1°. A complementary “anti-mask” greatly reduces systematic effects arising from non-uniform background rates amongst the detectors. The telescope has an effective area of 190 cm2 and an energy resolution of 19.5% FWHM at 662 keV. Results of laboratory tests of the imaging system, including the ability to image multiple sources, uniformity of response over the field-of-view, and the effect of the “anti-mask”, are in good agreement with computer simulations. Features of the flight detector system are described and results of laboratory tests and computer simulations are reviewed. A balloon flight of the telescope is planned for the fall of 1982.  相似文献   

18.
The Advanced Thin Ionization Calorimeter (ATIC) experiment is designed to investigate the charge composition and energy spectra of primary cosmic rays over the energy range from about 1011 to 1014 eV during Long Duration Balloon (LDB) flights from McMurdo, Antarctica. Currently, analysis from the ATIC-1 test flight and ATIC-2 science flight is underway and preparation for a second science flight is in progress. Charge identification of the incident cosmic ray is accomplished, primarily, by a pixilated Silicon Matrix detector located at the very top of the instrument. While it has been shown that the Silicon Matrix detector provides good charge identification even in the presence of electromagnetic shower backscatter from the calorimeter, the detector only measures the charge once. In this paper, we examine use of the top scintillator hodoscope detector to provide a second measure of the cosmic ray charge and, thus, improve the ATIC charge identification.  相似文献   

19.
In this paper, we report searches for antihelium in cosmic rays using two recently flown magnetic rigidity spectrometers. BESS-TeV had extended rigidity with an MDR of 1.4 TV and had a flight duration of one day. BESS-Polar was optimized for collecting power. It was flown for 8.5 days and had an MDR of 240 GV. The former flight allows us to explore a previously unexplored rigidity band and the latter flight yields a factor of three improvement in the overall BESS limit. No antihelium candidate was found in the rigidity ranges of 1–500 GV, and 0.6–20 GV, among 7 × 104 events taken with BESS-TeV, and 8 × 106 events taken with BESS-Polar, respectively.  相似文献   

20.
This paper describes the results of ongoing technology development activities for a Venus spherical superpressure balloon capable of flying for long durations (30 days) in the middle cloud layer at an altitude of 55.5 km. Data is presented from a successful aerial deployment and inflation flight experiment on a 5.5 m diameter prototype balloon conducted at a 2.5 km altitude above the Earth. Although the balloon in that test was not released for free flight, all other steps in the deployment and inflation process were successfully executed. Experimental and computational results are also presented from an investigation of the stress concentration phenomenon at the junction of the metal end fitting and fabric end cap of the prototype Venus balloon. Good agreement was found between the simulation and experimental results and a stress concentration factor of 1.55 determined for this end cap design compared to the expectations of thin membrane theory. Finally, results are presented for a new, second-generation Venus balloon material utilizing Aclar™ film instead of Teflon. Optical property and sulfuric acid tolerance data are presented for this material based on laboratory testing of samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号