首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 8 毫秒
1.
Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with quarter-hourly time interval resolution for the diurnal variation, obtained with DPS4 digisonde at Hainan (19.5°N, 109.1°E; Geomagnetic coordinates: 178.95°E, 8.1°N) are used to investigate the low-latitude ionospheric variations and comparisons with the International Reference Ionosphere (IRI) model predictions. The data used for the present study covers the period from February 2002 to April 2007, which is characterized by a wide range of solar activity, ranging from high solar activity (2002) to low solar activity (2007). The results show that (1) Generally, IRI predictions follow well the diurnal and seasonal variation patterns of the experimental values of foF2, especially in the summer of 2002. However, there are systematic deviation between experimental values and IRI predictions with either CCIR or URSI coefficients. Generally IRI model greatly underestimate the values of foF2 from about noon to sunrise of next day, especially in the afternoon, and slightly overestimate them from sunrise to about noon. It seems that there are bigger deviations between IRI Model predictions and the experimental observations for the moderate solar activity. (2) Generally the IRI-predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the experimental results, but there is a relatively good agreement in summer at low solar activity. The deviation between the IRI-predicted hmF2 using CCIR M(3000)F2 and observed hmF2 is bigger from noon to sunset and around sunrise especially at high solar activity. The occurrence time of hmF2 peak (about 1200 LT) of the IRI model predictions is earlier than that of observations (around 1500 LT). The agreement between the IRI hmF2 obtained with the measured M(3000)F2 and the observed hmF2 is very good except that IRI overestimates slightly hmF2 in the daytime in summer at high solar activity and underestimates it in the nighttime with lower values near sunrise at low solar activity.  相似文献   

2.
The unusually deep and extended solar minimum of cycle 23/24 made it very difficult to predict the solar indices 1 or 2 years into the future. Most of the predictions were proven wrong by the actual observed indices. IRI gets its solar, magnetic, and ionospheric indices from an indices file that is updated twice a year. In recent years, due to the unusual solar minimum, predictions had to be corrected downward with every new indices update. In this paper we analyse how much the uncertainties in the predictability of solar activity indices affect the IRI outcome and how the IRI values calculated with predicted and observed indices compared to the actual measurements. Monthly median values of F2 layer critical frequency (foF2) derived from the ionosonde measurements at the mid-latitude ionospheric station Juliusruh were compared with the International Reference Ionosphere (IRI-2007) model predictions. The analysis found that IRI provides reliable results that compare well with actual measurements, when the definite (observed and adjusted) indices of solar activity are used, while IRI values based on earlier predictions of these indices noticeably overestimated the measurements during the solar minimum. One of the principal objectives of this paper is to direct attention of IRI users to update their solar activity indices files regularly. Use of an older index file can lead to serious IRI overestimations of F-region electron density during the recent extended solar minimum.  相似文献   

3.
Diurnal and seasonal variations of critical frequency of ionospheric F2-region ‘foF2’ and the height of peak density ‘hmF2’ are studied using modern digital ionosonde observations of equatorial ionization anomaly (EIA) crest region, Bhopal (23.2°N, 77.6°E, dip 18.5°N), during solar minimum period 2007. Median values of these parameters are obtained at each hour using manually scaled data during different seasons and compared with the International Reference Ionosphere-2001 model predictions. The observations suggest that on seasonal basis, the highest values of foF2 are observed during equinox months, whereas highest values of hmF2 are obtained in summer and lowest values of both foF2 and hmF2 are observed during winter. The observed median and IRI predicted values of foF2 and hmF2 are analyzed with upper and lower bound of inter-quartile range (IQR) and it is find out that the observed median values are well inside the inter-quartile range during the period of 2007. Comparison of the recorded foF2 and hmF2 values with the IRI-2001 output reveals that IRI predicted values exhibit better agreement with hmF2 as compared to foF2. In general, the IRI model predictions show some agreement with the observations during the year 2007. Therefore it is still necessary to implement improvements in order to obtain better predictions for EIA regions.  相似文献   

4.
Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with hourly time interval resolution for the diurnal variation, obtained with DPS-4 digisonde observations at Hainan (19.4°N, 109.0°E) are used to study the low latitude ionospheric variation behavior. The observational results are compared with the International Reference Ionospheric Model (IRI) predictions. The time period coverage of the data used for the present study is from March 2002 to February 2005. Our present study showed that: (1) In general, IRI predictions using CCIR and URSI coefficients follow well the diurnal and seasonal variation patterns of the experimental values of foF2. However, CCIR foF2 and URSI foF2 IRI predictions systematically underestimate the observed results during most time period of the day, with the percentage difference ΔfoF2 (%) values changing between about −5% and −25%, whereas for a few hours around pre-sunrise, the IRI predictions generally overestimate the observational ones with ΔfoF2 (%) sometimes reaching as large as ∼30%. The agreement between the IRI results and the observational ones is better for the year 2002 than for the other years. The best agreement between the IRI results and the observational ones is obtained in summer when using URSI coefficients, with the seasonal average values of ΔfoF2 (%) being within the limits of ±10%. (2) In general, the IRI predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the observational results. However, when using the measured M(3000)F2 as input, the diurnal variation pattern of hmF2 given by IRI2001 has a much better agreement with the observational one with the detailed fine structures including the pre-sunrise and post-sunset peaks reproduced reasonably well. The agreement between the IRI predicted hmF2 values using CCIR M(30,000)F2 option and the observational ones is worst for the afternoon to post-midnight hours for the high solar activity year 2002. During daytime hours the agreement between the hmF2 values obtained with CCIR M(30,000)F2 option and the observational ones is best for summer season. The discrepancy between the observational hmF2 and that obtained with CCIR M(30,000)F2 option stem from the CCIR M(3000)F2 model, which does not produce the small scale structures observed in the measured M(3000)F2.  相似文献   

5.
The observed ionospheric F2 critical frequency (foF2) values over a South Africa mid-latitude station, Grahamstown, (geographic coordinates: 33.3°S, 26.5°E), were analysed and compared with International Reference Ionosphere (IRI) model, using the CCIR (Comite´ Consultatif International des Radio communications) and URSI (Union Radio-Scientifique Internationale) coefficients, during four geomagnetically disturbed days in the year 2000. These days are April 5, May 23, August 10 and September 15. The data were analysed for five days around the storm day. Comparisons between the IRI-2001 predicted foF2 values, using both CCIR and URSI coefficients and the observed values are shown with their root-mean-square error (RMSE) and the relative deviation module mean (rdmm) for the various storm periods. The CCIR option performed more accurately than the URSI option.  相似文献   

6.
The ionospheric sounding observations using the Canadian Advanced Digital Ionosondes (CADIs) operational at Palmas (PAL; 10.2°S, 48.2°W; dip latitude 6.6°S; a near-equatorial station), and São José dos Campos (SJC, 23.2°S, 45.9°W; dip latitude 17.6°S; a low-latitude station located under the southern crest of the equatorial ionospheric anomaly), Brazil, are analyzed during the different seasons viz., winter (June and July 2003), spring (September and October 2003), summer (December 2003 and January 2004), and fall (March and April 2004). The period used has medium solar activity (sunspot number between 77.4 and 39.3). The seasonal mean variations (using only geomagnetically quiet days) of the ionospheric parameters foF2 (critical frequency of the F-region), hpF2 (virtual height at 0.834 foF2; considered to be close to hmF2 (peak height of the F-region)), and h’F (minimum virtual height of the F-region) are calculated and compared between PAL and SJC. The prominent differences between PAL and SJC are as follows: h’F variations show strong post-sunset enhancement at PAL during the seasons of spring, summer, and fall; hpF2 variations show pre-sunrise uplifting of the F-layer at both stations during all the seasons and the hpF2 values during the daytime are lower at SJC compared with PAL during all the seasons; the foF2 variations show mid-day bite-out at PAL during all the seasons and SJC shows strong equatorial ionospheric anomaly during summer and fall seasons. Also, the seasonal variations of the ionospheric parameters foF2 and hpF2 (with ±1 standard deviation) observed at PAL and SJC are compared with the IRI-2007 model results of foF2 and hmF2. In addition, variations of the foF2 and hpF2 observed at SJC are compared with the IRI-2001 model results of foF2 and hmF2. It should be pointed out that the ionospheric parameter hpF2 is much easier to obtain using computer program developed at UNIVAP compared with hmF2 (using POLAN program). During the daytime due to underlying ionization hpF2 estimated is higher (approximately 50 km) than the true peak height hmF2. During the nighttime hpF2 is fairly close to hmF2. The comparison between the foF2 variations observed at PAL and SJC with the IRI-2007 model results shows a fairly good agreement during all the seasons. However, the comparison between the hpF2 variations observed at PAL and SJC with the hmF2 variations with the IRI-2007 model results shows: (1) a fairly good agreement during the nighttime in all the seasons; (2) the model results do not show the pre-sunrise uplifting of the F-layer at PAL and SJC in any season; (3) the model results do not show the post-sunset uplifting of the F-layer at PAL; (4) considering that, in general, hpF2 is higher than hmF2 during the daytime by about 50 km, the model results are in good agreement at PAL and SJC during all the seasons except summer at SJC, when large discrepancies in the observed hpF2 and modeled hmF2 are observed. Also, it has been observed that, in general, hmF2 values for SJC calculated using IRI-2001 are higher than IRI-2007 during the daytime in winter, summer, and fall. However, hmF2 values for SJC calculated using IRI-2001, are lower than IRI-2007 during the nighttime in spring.  相似文献   

7.
In our study we analyze and compare the response and behavior of the ionospheric F2 and of the sporadic E-layer during three strong (i.e., Dst?<??100nT) individual geomagnetic storms from years 2012, 2013 and 2015, winter time period. The data was provided by the state-of the art digital ionosonde of the Széchenyi István Geophysical Observatory located at midlatitude, Nagycenk, Hungary (IAGA code: NCK, geomagnetic latitude: 46.17° geomagnetic longitude: 98.85°). The local time of the sudden commencement (SC) was used to characterize the type of the ionospheric storm (after Mendillo and Narvaez, 2010). This way two regular positive phase (RPP) ionospheric storms and one no-positive phase (NPP) storm have been analyzed. In all three cases a significant increase in electron density of the foF2 layer can be observed at dawn/early morning (around 6:00 UT, 07:00 LT). Also we can observe the fade-out of the ionospheric layers at night during the geomagnetically disturbed time periods. Our results suggest that the fade-out effect is not connected to the occurrence of the sporadic E-layers.  相似文献   

8.
The ionospheric characteristics of the F2 layer peak have been measured with ionosondes from the ground or with satellites from space. The most common characteristics are the F2-peak density NmF2 and peak height hmF2. In addition to these two parameters this paper studies the F2-peak scale height. Comparing the median values of hmF2 and NmF2 obtained from topside and bottomside sounding shows good agreement in general. The Chapman scale height values for the F2 layer peak derived from topside profiles, Hm,top, are generally several times larger than Hm,bot derived from bottomside profiles.  相似文献   

9.
We report work utilizing 15-min resolution ionospheric data obtained with DPS-4 digisonde in 2003–2011 to study the seasonal variations in amplitudes and phases of the most powerful spectral components of the F2 layer critical frequency (foF2) and peak height (hmF2) fluctuations over Irkutsk (52.5°N, 104.0°E). We show that fluctuations of both parameters contain quasi-harmonic components with periods of Tn = 24/n h (n = 1–7). The number of distinct spectral peaks varies from 3 in summer to 7 in winter. Amplitude and phase characteristics of the diurnal (n = 1) and semidiurnal (n = 2) components is studied using the data sets extracted from the original data sets with band-pass filter. It has been found that the amplitudes of diurnal/semidiurnal foF2 and diurnal hmF2 components are maximum in winter and minimum in summer. Amplitudes of the diurnal components vary gradually; those of the foF2 semidiurnal one, abruptly, thus forming a narrow winter maximum in November–January. The phase (local time of maximum) of the diurnal foF2 component increases gradually by 4–6 h from winter to summer. The phase of the semidiurnal foF2 component is nearly stable in winter/summer and sharply decreases (increases) by 2–3 h near the spring (autumn) equinox. The phase of the diurnal component of hmF2 (local time of minimum) varies slightly between 1130 and 1300 LT; that of the semidiurnal one decreases (increases) by 4–6 h from January to March (from September to November). The results obtained show that the main features of seasonal variations in the diurnal and semidiurnal components of the mid-latitude F2 layer parameters recur consistently during the solar activity growth and decline phases.  相似文献   

10.
利用广州台站(23.2°N,113.3°E)的实测数据和IRI-2012模型提供的预测数据,对比分析了2013年广州地区f_0F2的变化特征.结果表明,IRI-2012模型能够较好预测该地区f_0F_2的变化趋势,并且CCIR参数得到的预测值比URSI参数更接近实测值;预测值与实测值存在系统偏差,在11:00 LT-06:00 LT时段,观测值均比预测值大,其他时段则相反.在日落后至午夜前时段,预测值与实测值有较大差距.绝对偏差的极值点通常出现在20:00 LT左右,最大超过4 MHz.相对偏差变化比较明显的时段是午夜后至凌晨;在02:00 LT或04:00 LT及06:00 LT附近,可能会出现双误差峰值点,最大超过0.4;但在σ变化很大的20:00 LT附近,相对偏差却变化不大.夜间增强现象会使得偏差增大,导致预测值不能很好反映实测f_0F2的变化.  相似文献   

11.
Bottom side electron density profiles for two stations at the southern crest of the Equatorial Ionization Anomaly (EIA), São José dos Campos (23.1°S, 314.5°E, dip latitude 19.8°S; Brazil) and Tucumán (26.9°S, 294.6°E, dip latitude 14.0°S; Argentina), located at similar latitude and separated by only 20° in longitude, have been compared during equinoctial, winter and summer months under low (year 2008, minimum of the solar cycle 23/24) and high solar activity (years 2013–2014, maximum of the solar cycle 24) conditions. An analysis of parameters describing the bottom side part of the electron density profile, namely the peak electron density NmF2, the height hmF2 at which it is reached, the thickness parameter B0 and the shape parameter B1, is carried out. Further, a comparison of bottom side profiles and F-layer parameters with the corresponding outputs of IRI-2012 and NeQuick2 models is also reported. The variations of NmF2 at both stations reveal the absence of semi-annual anomaly for low solar activity (LSA), evidencing the anomalous activity of the last solar minimum, while those related to hmF2 show an uplift of the ionosphere for high solar activity (HSA). As expected, the EIA is particularly visible at both stations during equinox for HSA, when its strength is at maximum in the South American sector. Despite the similar latitude of the two stations upon the southern crest of the EIA, the anomaly effect is more pronounced at Tucumán than at São José dos Campos. The differences encountered between these very close stations suggest that in this sector relevant longitudinal-dependent variations could occur, with the longitudinal gradient of the Equatorial Electrojet that plays a key role to explain such differences together with the 5.8° separation in dip latitude between the two ionosondes. Furthermore at Tucumán, the daily peak value of NmF2 around 21:00 LT during equinox for HSA is in temporal coincidence with an impulsive enhancement of hmF2, showing a kind of “elastic rebound” under the action of the EIA. IRI-2012 and NeQuick2 bottom side profiles show significant deviations from ionosonde observations. In particular, both models provide a clear underestimation of the EIA strength at both stations, with more pronounced differences for Tucumán. Large discrepancies are obtained for the parameter hmF2 for HSA during daytime at São José dos Campos, where clear underestimations made by both models are observed. The shape parameter B0 is quite well described by the IRI-2012 model, with very good agreement in particular during equinox for both stations for both LSA and HSA. On the contrary, the two models show poor agreements with ionosonde data concerning the shape parameter B1.  相似文献   

12.
To study the variation of ionospheric electron and ion temperatures with solar activity the data of electron and ion temperatures were recorded with the help of Retarding Potential Analyzer payload aboard Indian SROSS-C2 satellite at an average altitude of ∼500 km. The main focuses of the paper is to see the diurnal, seasonal and latitudinal variations of electron and ion temperatures during periods of minimum to maximum solar activity. The ionospheric temperatures in the topside show strong variations with altitude, latitude, season and solar activity. In present study, the temperature variations with latitude, season and solar activity have been studied at an average altitude ∼500 km. The peak at sunrise has been observed during all seasons, in both electron and ion temperatures. Further, the ionospheric temperatures vary with latitude in day time. The latitudinal variation is more pronounced for low solar activity than for high solar activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号