共查询到20条相似文献,搜索用时 15 毫秒
1.
X. Wang J.K. ShiG.J. Wang Y. Gong 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with quarter-hourly time interval resolution for the diurnal variation, obtained with DPS4 digisonde at Hainan (19.5°N, 109.1°E; Geomagnetic coordinates: 178.95°E, 8.1°N) are used to investigate the low-latitude ionospheric variations and comparisons with the International Reference Ionosphere (IRI) model predictions. The data used for the present study covers the period from February 2002 to April 2007, which is characterized by a wide range of solar activity, ranging from high solar activity (2002) to low solar activity (2007). The results show that (1) Generally, IRI predictions follow well the diurnal and seasonal variation patterns of the experimental values of foF2, especially in the summer of 2002. However, there are systematic deviation between experimental values and IRI predictions with either CCIR or URSI coefficients. Generally IRI model greatly underestimate the values of foF2 from about noon to sunrise of next day, especially in the afternoon, and slightly overestimate them from sunrise to about noon. It seems that there are bigger deviations between IRI Model predictions and the experimental observations for the moderate solar activity. (2) Generally the IRI-predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the experimental results, but there is a relatively good agreement in summer at low solar activity. The deviation between the IRI-predicted hmF2 using CCIR M(3000)F2 and observed hmF2 is bigger from noon to sunset and around sunrise especially at high solar activity. The occurrence time of hmF2 peak (about 1200 LT) of the IRI model predictions is earlier than that of observations (around 1500 LT). The agreement between the IRI hmF2 obtained with the measured M(3000)F2 and the observed hmF2 is very good except that IRI overestimates slightly hmF2 in the daytime in summer at high solar activity and underestimates it in the nighttime with lower values near sunrise at low solar activity. 相似文献
2.
Comparative study of foF2 measurements with IRI-2007 model predictions during extended solar minimum
I.E. Zakharenkova A. Krankowski D. Bilitza Iu.V. Cherniak I.I. Shagimuratov R. Sieradzki 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The unusually deep and extended solar minimum of cycle 23/24 made it very difficult to predict the solar indices 1 or 2 years into the future. Most of the predictions were proven wrong by the actual observed indices. IRI gets its solar, magnetic, and ionospheric indices from an indices file that is updated twice a year. In recent years, due to the unusual solar minimum, predictions had to be corrected downward with every new indices update. In this paper we analyse how much the uncertainties in the predictability of solar activity indices affect the IRI outcome and how the IRI values calculated with predicted and observed indices compared to the actual measurements. Monthly median values of F2 layer critical frequency (foF2) derived from the ionosonde measurements at the mid-latitude ionospheric station Juliusruh were compared with the International Reference Ionosphere (IRI-2007) model predictions. The analysis found that IRI provides reliable results that compare well with actual measurements, when the definite (observed and adjusted) indices of solar activity are used, while IRI values based on earlier predictions of these indices noticeably overestimated the measurements during the solar minimum. One of the principal objectives of this paper is to direct attention of IRI users to update their solar activity indices files regularly. Use of an older index file can lead to serious IRI overestimations of F-region electron density during the recent extended solar minimum. 相似文献
3.
Sneha Yadav R.S. Dabas Rupesh M. Das A.K. Upadhayaya Kavita Sharma A.K. Gwal 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Diurnal and seasonal variations of critical frequency of ionospheric F2-region ‘foF2’ and the height of peak density ‘hmF2’ are studied using modern digital ionosonde observations of equatorial ionization anomaly (EIA) crest region, Bhopal (23.2°N, 77.6°E, dip 18.5°N), during solar minimum period 2007. Median values of these parameters are obtained at each hour using manually scaled data during different seasons and compared with the International Reference Ionosphere-2001 model predictions. The observations suggest that on seasonal basis, the highest values of foF2 are observed during equinox months, whereas highest values of hmF2 are obtained in summer and lowest values of both foF2 and hmF2 are observed during winter. The observed median and IRI predicted values of foF2 and hmF2 are analyzed with upper and lower bound of inter-quartile range (IQR) and it is find out that the observed median values are well inside the inter-quartile range during the period of 2007. Comparison of the recorded foF2 and hmF2 values with the IRI-2001 output reveals that IRI predicted values exhibit better agreement with hmF2 as compared to foF2. In general, the IRI model predictions show some agreement with the observations during the year 2007. Therefore it is still necessary to implement improvements in order to obtain better predictions for EIA regions. 相似文献
4.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,39(5):661-667
Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with hourly time interval resolution for the diurnal variation, obtained with DPS-4 digisonde observations at Hainan (19.4°N, 109.0°E) are used to study the low latitude ionospheric variation behavior. The observational results are compared with the International Reference Ionospheric Model (IRI) predictions. The time period coverage of the data used for the present study is from March 2002 to February 2005. Our present study showed that: (1) In general, IRI predictions using CCIR and URSI coefficients follow well the diurnal and seasonal variation patterns of the experimental values of foF2. However, CCIR foF2 and URSI foF2 IRI predictions systematically underestimate the observed results during most time period of the day, with the percentage difference ΔfoF2 (%) values changing between about −5% and −25%, whereas for a few hours around pre-sunrise, the IRI predictions generally overestimate the observational ones with ΔfoF2 (%) sometimes reaching as large as ∼30%. The agreement between the IRI results and the observational ones is better for the year 2002 than for the other years. The best agreement between the IRI results and the observational ones is obtained in summer when using URSI coefficients, with the seasonal average values of ΔfoF2 (%) being within the limits of ±10%. (2) In general, the IRI predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the observational results. However, when using the measured M(3000)F2 as input, the diurnal variation pattern of hmF2 given by IRI2001 has a much better agreement with the observational one with the detailed fine structures including the pre-sunrise and post-sunset peaks reproduced reasonably well. The agreement between the IRI predicted hmF2 values using CCIR M(30,000)F2 option and the observational ones is worst for the afternoon to post-midnight hours for the high solar activity year 2002. During daytime hours the agreement between the hmF2 values obtained with CCIR M(30,000)F2 option and the observational ones is best for summer season. The discrepancy between the observational hmF2 and that obtained with CCIR M(30,000)F2 option stem from the CCIR M(3000)F2 model, which does not produce the small scale structures observed in the measured M(3000)F2. 相似文献
5.
A.O. Adewale E.O. OyeyemiU.D. Ofuase 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The observed ionospheric F2 critical frequency (foF2) values over a South Africa mid-latitude station, Grahamstown, (geographic coordinates: 33.3°S, 26.5°E), were analysed and compared with International Reference Ionosphere (IRI) model, using the CCIR (Comite´ Consultatif International des Radio communications) and URSI (Union Radio-Scientifique Internationale) coefficients, during four geomagnetically disturbed days in the year 2000. These days are April 5, May 23, August 10 and September 15. The data were analysed for five days around the storm day. Comparisons between the IRI-2001 predicted foF2 values, using both CCIR and URSI coefficients and the observed values are shown with their root-mean-square error (RMSE) and the relative deviation module mean (rdmm) for the various storm periods. The CCIR option performed more accurately than the URSI option. 相似文献
6.
Nina Zolotukhina Nelya Polekh Olga Pirog 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Statistical and spectral analyses are performed to investigate variations of two ionosphere F2 layer key parameters, the critical frequency (foF2) and the peak height (hmF2), that were measured over Irkutsk (52.5°N, 104.0°E) from December 2006 to January 2008 under solar minimum. The analyses showed that both parameters contain quasi-harmonic oscillations with periods of Tn = 24/n hours (n = 1–7), among which the diurnal (n = 1) and semidiurnal (n = 2) ones are the strongest. Seasonal variations are explored of mean and median values, spectrum, amplitude, and phase of the diurnal and semidiurnal components of foF2 and hmF2. 相似文献
7.
Rajat Acharya Saibal Majumdar 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(6):1892-1904
The vertical ionospheric TEC values obtained from GAGAN grid based ionospheric delay correction values over the sea in the Indian equatorial region have been compared with the corresponding values derived from the International Reference Ionosphere model, IRI-2016. The objective of this work is to study the deviation of the vertical TEC derived from the IRI model from ground truths over the sea for different conditions. This will serve the basic intention of assessing the candidature of the IRI model as an alternative ionospheric correction model in navigation receivers in terms of accuracy. We have chosen different solar activity periods, seasons, geomagnetic conditions, locations etc. for our comparison and analysis. The TEC values by the IRI-2016 were compared with the actual measured values for the given conditions and errors were obtained. The measured vertical TEC values at the ionospheric grid points were derived from the GAGAN broadcast ionospheric delay data and used as reference. The IRI model with standard internal functions was used in estimating the TEC at the same ionospheric grid points. The errors in the model derived values are statistically analysed. Broadly, the results show that, for the Indian sector over the sea, the IRI model performs better on quiet days in off equatorial regions, particularly in the northern region. The overall performance degrades for other conditions with the model generally underestimating the true TEC values and most severely in the equatorial region. The performance is worst in this region for the disturbed days of the equinoctial period. The comparison study is also done with the TEC data measured directly by dual frequency GPS receivers. The results were found to be in general agreement with those obtained by comparing the model with GAGAN broadcast data as reference. This study will be useful in considering the IRI-2016 model for real time estimates of TEC as an alternative to the current parametric model in a satellite navigation receiver in absence of other options. 相似文献
8.
R. de Jesus Y. Sahai F.L. Guarnieri P.R. Fagundes A.J. de Abreu V.G. Pillat W.L.C. Lima 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The ionospheric sounding observations using the Canadian Advanced Digital Ionosondes (CADIs) operational at Palmas (PAL; 10.2°S, 48.2°W; dip latitude 6.6°S; a near-equatorial station), and São José dos Campos (SJC, 23.2°S, 45.9°W; dip latitude 17.6°S; a low-latitude station located under the southern crest of the equatorial ionospheric anomaly), Brazil, are analyzed during the different seasons viz., winter (June and July 2003), spring (September and October 2003), summer (December 2003 and January 2004), and fall (March and April 2004). The period used has medium solar activity (sunspot number between 77.4 and 39.3). The seasonal mean variations (using only geomagnetically quiet days) of the ionospheric parameters foF2 (critical frequency of the F-region), hpF2 (virtual height at 0.834 foF2; considered to be close to hmF2 (peak height of the F-region)), and h’F (minimum virtual height of the F-region) are calculated and compared between PAL and SJC. The prominent differences between PAL and SJC are as follows: h’F variations show strong post-sunset enhancement at PAL during the seasons of spring, summer, and fall; hpF2 variations show pre-sunrise uplifting of the F-layer at both stations during all the seasons and the hpF2 values during the daytime are lower at SJC compared with PAL during all the seasons; the foF2 variations show mid-day bite-out at PAL during all the seasons and SJC shows strong equatorial ionospheric anomaly during summer and fall seasons. Also, the seasonal variations of the ionospheric parameters foF2 and hpF2 (with ±1 standard deviation) observed at PAL and SJC are compared with the IRI-2007 model results of foF2 and hmF2. In addition, variations of the foF2 and hpF2 observed at SJC are compared with the IRI-2001 model results of foF2 and hmF2. It should be pointed out that the ionospheric parameter hpF2 is much easier to obtain using computer program developed at UNIVAP compared with hmF2 (using POLAN program). During the daytime due to underlying ionization hpF2 estimated is higher (approximately 50 km) than the true peak height hmF2. During the nighttime hpF2 is fairly close to hmF2. The comparison between the foF2 variations observed at PAL and SJC with the IRI-2007 model results shows a fairly good agreement during all the seasons. However, the comparison between the hpF2 variations observed at PAL and SJC with the hmF2 variations with the IRI-2007 model results shows: (1) a fairly good agreement during the nighttime in all the seasons; (2) the model results do not show the pre-sunrise uplifting of the F-layer at PAL and SJC in any season; (3) the model results do not show the post-sunset uplifting of the F-layer at PAL; (4) considering that, in general, hpF2 is higher than hmF2 during the daytime by about 50 km, the model results are in good agreement at PAL and SJC during all the seasons except summer at SJC, when large discrepancies in the observed hpF2 and modeled hmF2 are observed. Also, it has been observed that, in general, hmF2 values for SJC calculated using IRI-2001 are higher than IRI-2007 during the daytime in winter, summer, and fall. However, hmF2 values for SJC calculated using IRI-2001, are lower than IRI-2007 during the nighttime in spring. 相似文献
9.
Man-Lian Zhang Chunxu LiuWeixing Wan Libo LiuBaiqi Ning 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Global modeling of M(3000)F2 and hmF2 based on three alternative EOF (empirical orthogonal function) expansion methods is described briefly. Data used for the model construction is the monthly median hourly values of M(3000)F2 from the ionosonde/digisonde stations distributed around the world for the period of 1975–1985 and the hmF2 data of the same period converted from the measured M(3000)F2 based on the strong anti-correlation existing between them. Independent data of a low (1965) and a high (1970) solar activity year are used to validate the three alternative models based on different EOF expansion methods. Comparisons between the modeled results and observed data for both the low (1965) and high (1970) solar activity years showed good agreement for both M(3000)F2 and hmF2 parameters. Statistical analysis on the differences between model values and observed data showed that all the three alternative models (Model A, B and C) based on the different EOF expansion methods have better agreement with the observed data than the models currently used in IRI. All three alternative EOF based models have almost the same accuracy. Discussion on the preference of the three alternative EOF based models is given. 相似文献
10.
K.A. Berényi V. Barta Á. Kis 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(5):1230-1243
In our study we analyze and compare the response and behavior of the ionospheric F2 and of the sporadic E-layer during three strong (i.e., Dst?<??100nT) individual geomagnetic storms from years 2012, 2013 and 2015, winter time period. The data was provided by the state-of the art digital ionosonde of the Széchenyi István Geophysical Observatory located at midlatitude, Nagycenk, Hungary (IAGA code: NCK, geomagnetic latitude: 46.17° geomagnetic longitude: 98.85°). The local time of the sudden commencement (SC) was used to characterize the type of the ionospheric storm (after Mendillo and Narvaez, 2010). This way two regular positive phase (RPP) ionospheric storms and one no-positive phase (NPP) storm have been analyzed. In all three cases a significant increase in electron density of the foF2 layer can be observed at dawn/early morning (around 6:00 UT, 07:00 LT). Also we can observe the fade-out of the ionospheric layers at night during the geomagnetically disturbed time periods. Our results suggest that the fade-out effect is not connected to the occurrence of the sporadic E-layers. 相似文献
11.
12.
N. Zolotukhina N. Polekh E. Romanova A. Polyakova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
We report work utilizing 15-min resolution ionospheric data obtained with DPS-4 digisonde in 2003–2011 to study the seasonal variations in amplitudes and phases of the most powerful spectral components of the F2 layer critical frequency (foF2) and peak height (hmF2) fluctuations over Irkutsk (52.5°N, 104.0°E). We show that fluctuations of both parameters contain quasi-harmonic components with periods of Tn = 24/n h (n = 1–7). The number of distinct spectral peaks varies from 3 in summer to 7 in winter. Amplitude and phase characteristics of the diurnal (n = 1) and semidiurnal (n = 2) components is studied using the data sets extracted from the original data sets with band-pass filter. It has been found that the amplitudes of diurnal/semidiurnal foF2 and diurnal hmF2 components are maximum in winter and minimum in summer. Amplitudes of the diurnal components vary gradually; those of the foF2 semidiurnal one, abruptly, thus forming a narrow winter maximum in November–January. The phase (local time of maximum) of the diurnal foF2 component increases gradually by 4–6 h from winter to summer. The phase of the semidiurnal foF2 component is nearly stable in winter/summer and sharply decreases (increases) by 2–3 h near the spring (autumn) equinox. The phase of the diurnal component of hmF2 (local time of minimum) varies slightly between 1130 and 1300 LT; that of the semidiurnal one decreases (increases) by 4–6 h from January to March (from September to November). The results obtained show that the main features of seasonal variations in the diurnal and semidiurnal components of the mid-latitude F2 layer parameters recur consistently during the solar activity growth and decline phases. 相似文献
13.
Patrick A. Nsumei Bodo W. Reinisch Xueqin Huang Dieter Bilitza 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The ionospheric characteristics of the F2 layer peak have been measured with ionosondes from the ground or with satellites from space. The most common characteristics are the F2-peak density NmF2 and peak height hmF2. In addition to these two parameters this paper studies the F2-peak scale height. Comparing the median values of hmF2 and NmF2 obtained from topside and bottomside sounding shows good agreement in general. The Chapman scale height values for the F2 layer peak derived from topside profiles, Hm,top, are generally several times larger than Hm,bot derived from bottomside profiles. 相似文献
14.
M.G. Deminov G.F. Deminova G.A. Zherebtsov N.M. Polekh 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The statistical analysis of the quiet ionosphere F2-layer maximum parameters variability (deviations of NmF2 and hmF2 from the quiet medians, δn and Δh) under solar minimum at day (10–16 LT) and night (22–04 LT) hours based on data of Irkutsk station for 2007–2010 is presented. It is found that the experimental distribution (histogram) of δn can be approximated by a mixture of two normal distributions. The first and second components of the mixture characterize, mainly, relatively weak and strong fluctuations of δn which are presumably associated with the ionospheric effects of the atmospheric gravity waves and of the planetary waves and tides correspondingly. Deviation of the δn histogram from a single normal distribution is most considerable at night hours in winter and equinoxes. For these conditions the weak fluctuations of δn are mainly negative and the strong ones are mainly positive. The Δh histogram is a normal distribution except day hours in winter and equinoxes when a weak deviation of the histogram from the normal distribution occurs. 相似文献
15.
P. Kenpankho P. Supnithi T. Nagatsuma 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
In this research, as part of working towards improving the IRI over equatorial region, the total electron content (TEC) derived from GPS measurements and IRI-2007 TEC predictions at Chumphon station (10.72°N, 99.37°E), Thailand, during 2004–2006 is analyzed. The seasonal variation of the IRI-2007 TEC predictions is compared with the TEC from the IRI-2007 TEC model with the option of the actual F2 plasma frequency (foF2) measurements as well as the TEC from the GPS and International GNSS service (IGS). The Chumphon station is located at the equatorial region and the low latitude of 3.22°N. For a declining phase of the solar cycle (2004–2006), the study shows that the IRI-2007 TEC underestimates the IRI-2007 TEC with the foF2 observation at the nighttime by about 5 TECU. The maximum differences are about 15 TECU during daytime and 5 TECU during nighttime. The overestimation is more evident at daytime than at nighttime. When compared in terms of the root-mean square error (RMSE), we find that the highest RMSE between GPS TEC and IRI 2007 TEC is 14.840 TECU at 1230 LT in 2004 and the lowest average between them is 1.318 TECU at 0630 LT in 2006. The noon bite-out phenomena are clearly seen in the IRI-2007 TEC with and without optional foF2 measurements, but not on the GPS TEC and IGS TEC. The IRI TEC with optional foF2 measurements gives the lowest RMSE values between IRI TEC predicted and TEC measurement. However, the TEC measurements (GPS TEC and IGS TEC) are more correct to use at Chumphon station. 相似文献
16.
利用广州台站(23.2°N,113.3°E)的实测数据和IRI-2012模型提供的预测数据,对比分析了2013年广州地区f_0F2的变化特征.结果表明,IRI-2012模型能够较好预测该地区f_0F_2的变化趋势,并且CCIR参数得到的预测值比URSI参数更接近实测值;预测值与实测值存在系统偏差,在11:00 LT-06:00 LT时段,观测值均比预测值大,其他时段则相反.在日落后至午夜前时段,预测值与实测值有较大差距.绝对偏差的极值点通常出现在20:00 LT左右,最大超过4 MHz.相对偏差变化比较明显的时段是午夜后至凌晨;在02:00 LT或04:00 LT及06:00 LT附近,可能会出现双误差峰值点,最大超过0.4;但在σ变化很大的20:00 LT附近,相对偏差却变化不大.夜间增强现象会使得偏差增大,导致预测值不能很好反映实测f_0F2的变化. 相似文献
17.
F3 layer feature under low and medium solar activity observed at a Chinese low latitude station Fuke
Zhengping Zhu Kun Chen Jiaping Lan Fenglou Sun 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Ionogram observations from the ionosonde at Fuke (9.5°N geomagnetic latitude), a Chinese low latitude station, in 2010–2012 are analyzed to present the features of F3 layer under low and moderate solar activity conditions. Structure of the ionogram, displaying the F3 layer, was more distinct and clear during MSA than LSA periods especially during spring to summer. Start time of occurrence of the F3 layer is about at 0830–0900 LT and is approximately the same for LSA and MSA conditions. The average duration time of the F3 layer occurrence was 181 min per day under F10.7 = 75 condition, 263 min in F10.7 = 99 and 358 min in F10.7 = 125, respectively. The differences of h′F2 and h′F3 exhibited obvious semiannual variation observed at Fuke from March 2010 to June 2012 and increased with increasing solar activity. The difference of foF2 and foF3 in the months February, March, September, October and November is less evident in the middle solar activity period 2011–2012 than the low solar activity 2010 and in the other period it shows a slight increase (0.5 MHz) or keeps constant. The results show that the solar activity dependence of the F3 layer occurrence at low latitude away from the magnetic equator is different from that at near the magnetic equator. 相似文献
18.
S.G. Wang J.K. Shi X. Wang G.J. Wang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
NeQuick ionospheric electron density model, which has been developed to version 2, produces the full electron density profile in the ionosphere. Each part of the profile is modeled using Epstein layer formalism. Simple empirical relations are used to compute the thicknesses of each layer. In order to validate the B2bot parameter in the NeQuick model during high solar activity, we use the data at Hainan, China (109.1°E, 19.5°N; Geomagnetic coordinates: 178.95°E, 8.1°N), measured with DPS-4, and study the diurnal and seasonal variations of B2bot, ΔB2 (B2best − B2NeQuick 2) and the seasonal median values of B2best/B2NeQuick 2 at that region. The results show that, (1) The differences between B2best and B2NeQuick 2 have diurnal and seasonal variations. (2) The diurnal variations of B2NeQuick 2 are smaller than those of B2best. (3) Generally, except for early morning the experimental values are properly reproduced. (4) Generally, during morning the NeQuick model has an underestimation. The magnitude of underestimation varies with LT and season. 相似文献
19.
S.G. Wang J.K. Shi X. Wang G.J. Wang H.F. Zhang G.M. Chen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
This work is a continuation of the previous article and it focuses on low solar activity and modeling effort. NeQuick model uses Epstein layer formalism to model each part of the profile. We study the diurnal and seasonal variations of B2bot, ΔB2 (B2best − B2NeQuick2) and R (B2best/B2NeQuick 2) at Hainan station during low solar activity. The results show it is possible to improve the B2bot parameter of the NeQuick model at that region during low solar activity. Then, we use a function ?(t) with LT in different seasons to correct the B2bot formula of NeQuick 2. The correction shows that (1) By the correction formula, the B2bot of NeQuick is improved. The maximum standard deviation is improved for 9 km. (2) The correction formula is more effective in summer than in equinox and winter and performs better during early morning hours than during the rest of the day. 相似文献
20.
Muhammad Ayyaz Ameen Haqqa Khursheed Mehak Abdul Jabbar Muneeza Salman Ali Farrukh Chishtie 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(7):1726-1735
We report the results of ionospheric measurements from DPS-4 installed at Multan (Geog coord. 30.18°N, 71.48°E, dip 47.4°). The variations in F2-layer maximum electron density NmF2 and its peak height hmF2 are studied during the deep solar minimum between cycles 23 & 24 i.e 2008–2009 with comparisons conducted with the International Reference Ionosphere (IRI) versions 2012 & 2016. We find that the hmF2 observations peak around the pre-sunrise and sunrise hours depending on the month. Seasonally, the daytime variation of NmF2 is higher in the Equinox and Summer, while daytime hmF2 are slightly higher in the Equinox and Winter. High values of hmF2 around midnight are caused by an increase of upward drifts produced by meridional winds. The ionosphere over Multan, which lies at the verge of low and mid latitude, is affected by both drifts and thermospheric winds as evident from mid-night peaks and near-sunrise dips in hmF2. The results of the comparison of the observed NmF2 and hmF2 for the year 2008–2009 with the IRI-2012 (both NmF2 and hmF2) and IRI-2016 (only hmF2) estimates indicate that for NmF2, IRI-2012 with Consultative Committee International Radio (CCIR) option produces values in better agreement with observed data. Whereas, for hmF2, IRI-2016 with both International Union of Radio Science (URSI) and CCIR SHU-2015 options, predicts well for nighttime hours throughout the year. However, the IRI-2012 with CCIR option produces better agreement with data during daytime hours. Furthermore, IRI-2012 with CCIR option gives better results during Equinox months, whereas, IRI-2016 with both URSI and CCIR SHU-2015 options predict well for Winter and Summer. 相似文献