首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The unusual core-collapse supernova 1986J, in the nearby spiral NGC 891, is the first modern supernova in which evidence of a compact remnant of the supernova has been seen. This evidence comes from recent VLBI images, which show the emergence of a new radio component in the center of the expanding radio shell. The new component shows an inverted radio spectrum contrasting with that of the shell. The new component is likely radio emission associated with the black-hole or neutron star compact remnant of the explosion, which would mark the first direct observational link between a modern supernova and such a compact remnant. We report here on our recent VLBI images at 22 and 5 GHz, as well as on our monitoring of the integrated radio spectrum of SN 1986J. In the 22 GHz image, the central component is marginally resolved.  相似文献   

2.
The balloon-borne very long baseline interferometry (VLBI) experiment is a technical feasibility study for performing radio interferometry in the stratosphere. The flight model has been developed. A balloon-borne VLBI station will be launched to establish interferometric fringes with ground-based VLBI stations distributed over the Japanese islands at an observing frequency of approximately 20?GHz as the first step. This paper describes the system design and development of a series of observing instruments and bus systems. In addition to the advantages of avoiding the atmospheric effects of absorption and fluctuation in high frequency radio observation, the mobility of a station can improve the sampling coverage (“uv-coverage”) by increasing the number of baselines by the number of ground-based counterparts for each observation day. This benefit cannot be obtained with conventional arrays that solely comprise ground-based stations. The balloon-borne VLBI can contribute to a future progress of research fields such as black holes by direct imaging.  相似文献   

3.
This work presents the spectral and temporal features of radio bursts with fine structures (FSs) at broad band from 1.1 to 7.6 GHz. Fifteen burst events are studied with high frequency and temporal cadence observation from the Solar Broadband Radio Spectrometer at three frequency bands. It is found that the amount and species of radio FS decrease with increasing frequency band; the pulsation, type III burst and continuum are most frequently recorded; almost in all the burst events, more radio FSs occur before the soft X-ray (SXR) maximum than after; at 1.1–2.06 GHz, all types of radio FSs have more before the SXR peak except fiber; at 2.6–3.8 GHz, pulsation, fiber and spike prefer to appear after the peak; the separation between neighboring emission lines of zebra pattern increases with increasing frequency and the magnetic field deduced from the whistler model is 29–86 G at 1.1–2.06 GHz and 89–268 G at 2.6–3.8 GHz.  相似文献   

4.
Radio bursts with fine structures in decimetric–centimetric wave range are generally believed to manifest the primary energy release process during flare/CME events. By spectropolarimeters in 1–2 GHz, 2.6–3.8 GHz, and 5.2–7.6 GHz at NAOC/Huairou with very high temporal (1.25–8 ms) and spectral (4–20 MHz) resolutions, the zebra patterns, spikes, and new types of radio fine structures with mixed frequency drift features are observed during several significant flare/CME events. In this paper we will discuss the occurrence of radio fine structures during the impulsive phase of flares and/or CME initiations, which may be connected to the magnetic reconnection processes.  相似文献   

5.
The Microwave Limb Sounder (MLS) instrument is a small satellite-borne radio telescope. Its purpose is to make limb-scanning measurements of atmospheric composition. One of the gases to which it is sensitive is carbon monoxide (CO), detected via the J = 2 → 1 rotational transition at 230 GHz. CO is present in molecular gas clouds in the Milky Way. Although it was not designed for the purpose, MLS can detect emissions from galactic CO, allowing a map of the 230 GHz radio sky to be constructed. We report the MLS measurements of galactic radio emission and discuss their effect on the atmospheric mission of MLS. The region of the Milky Way with emissions strong enough to significantly affect MLS observations of atmospheric CO is identified. Ground-based radio astronomers have been mapping the sky using CO emission for many years. However, the MLS data are the first such survey to be carried out from space. The MLS survey covers a larger area of the sky than any other 230 GHz survey, but no previously unknown gas clouds are observed.  相似文献   

6.
Radio and gamma-ray emissions in Active Galactic Nuclei (AGNs) are both related to the presence of relativistic particles in jets. With the advent of the Fermi Large Area Telescope (LAT), and thanks to its large sensitivity up to several GeV, many observational results are changing our understanding of these phenomena. BL Lac objects, which made up only a fraction of the known extragalactic gamma-ray source population before Fermi, have now become the most abundant class. However, since they are relatively weak radio sources, most of them are poorly known as far as their parsec scale structure and multi-wavelength properties are concerned. For this reason, we have selected a complete sample of 42 low redshift BL Lacs (independently of their gamma-ray properties) to study with a multi-wavelength (radio, optical, X-ray, gamma-ray) approach. Here, we present results and images of sources in the sample (most of which have never been observed before), using new VLBA observations at 8 and 15 GHz. Beyond this sample of BL Lacs, the population of gamma-ray AGNs has also dramatically enlarged in the Fermi era, permitting us to discuss the presence of a correlation between radio and gamma-ray properties with improved statistical significance. We explore the radio-gamma relation with several hundreds sources and using both simultaneous and archival radio data, thus tackling the impact of time variability.  相似文献   

7.
In this paper, we report the statistical analysis of flare events observed by NoRH during 1992–2005 and NoRP during 1994–2005. We give the power law indices for the frequency distribution of peak brightness temperature which is 1.87 ± 0.05 for 17 GHz observation and is 1.64 ± 0.04 for 34 GHz observation. We also present the frequency variation of power law indices for peak flux and total energy of flare for NoRP observation, which is mono-increasing from 1 to 17 GHz.  相似文献   

8.
Individual giant radio pulses (GRPs) from the Crab pulsar last only a few microseconds. However, during that time they rank among the brightest objects in the radio sky reaching peak flux densities of up to 1500 Jy even at high radio frequencies. Our observations show that GRPs can be found in all phases of ordinary radio emission including the two high frequency components (HFCs) visible only between 5 and 9 GHz [Moffett, D.A., Hankins, T.H. Multifrequency radio observations of the Crab pulsar. Astrophys. J. 468, 779–783, 1996]. This leads us to believe that there is no difference in the emission mechanism of the main pulse (MP), inter pulse (IP) and HFCs. High resolution dynamic spectra from our recent observations of giant pulses with the Effelsberg telescope at a center frequency of 8.35 GHz show distinct spectral maxima within our observational bandwidth of 500 MHz for individual pulses. Their narrow band components appear to be brighter at higher frequencies (8.6 GHz) than at lower ones (8.1 GHz). Moreover, there is an evidence for spectral evolution within and between those structures. High frequency features occur earlier than low frequency ones. Strong plasma turbulence might be a feasible mechanism for the creation of the high energy densities of ∼6.7 × 104 erg cm−3 and brightness temperatures of ∼1031 K.  相似文献   

9.
Using Chandra X-ray, Spitzer mid-IR, and 1.5 GHz radio data, we examine the spatial structure of SNR 3C 391. The X-ray surface brightness is generally anti-correlative with the IR and radio brightness. The multiband data clearly exhibit a heart-shaped morphology and show the multi-shell structure of the remnant. A previously unseen thin brace-like shell on the south detected at 24 μm is projected outside the radio border and confines the southern faint X-ray emission. The leading 24 μm knot on the SE boundary appears to be partly surrounded by soft X-ray emitting gas. The mid-IR emission is dominated by the contribution of the shocked dust grains, which may have been partly destroyed by sputtering.  相似文献   

10.
In this paper we present the findings of a COSPAR Mars Special Regions Colloquium held in Rome in 2007. We review and discuss the definition of Mars Special Regions, the physical parameters used to define Mars Special Regions, and physical features on Mars that can be interpreted as Mars Special Regions. We conclude that any region experiencing temperatures > −25 °C for a few hours a year and a water activity > 0.5 can potentially allow the replication of terrestrial microorganisms. Physical features on Mars that can be interpreted as meeting these conditions constitute a Mars Special Region. Based on current knowledge of the martian environment and the conservative nature of planetary protection, the following features constitute Mars Special regions: Gullies and bright streaks associated with them, pasted-on terrain, deep subsurface, dark streaks only on a case-by-case basis, others to be determined. The parameter definition and the associated list of physical features should be re-evaluated on a regular basis.  相似文献   

11.
We present the results of low frequency radio observations of the X-ray binaries, Cygnus X-1 and Cygnus X-3, during different X-ray states. The low frequency observations were made for the first time for these sources at 0.61 and 1.28 GHz using the Giant Meter-wave Radio Telescope (GMRT) between 2003 and 2004. Both Cyg X-1 and Cyg X-3 are highly variable at low radio frequencies. We also compare our data with the observations at 15 GHz conducted by the Ryle telescope. Spectral turnover is seen for both the sources below 2 GHz. The data suggest that the change in the radio flux density in both the sources is correlated to the X-ray hardness ratio and follows a similar behavior pattern.  相似文献   

12.
The radiosonde data available from British Atmospheric Data Centre (BADC) for the latitudinal occupancy of 58° north through 45° south were analyzed to observe the variation of temperature and water vapor density. These two climatological parameters are largely assumed to be the influencing factors in determining the millimeter wave window frequencies over the chosen range of latitudes in between the two successive maxima occurring at 60 and 120 GHz. It is observed that between temperature and water vapor density, the later one is influencing mostly in determining the window frequency. It is also observed that the minima is occurring at 75 GHz through 94 GHz over the globe during the month January–February and 73 GHz through 85 GHz during the month July–August, depending on the latitudinal occupancy. It is observed that the large abundance of water vapor is mainly held responsible for shifting of minima towards the low value of frequencies. Hence, it is becoming most important to look at the climatological parameters in determining the window frequency at the place of choice.  相似文献   

13.
To understand the connection among the subclasses of BL Lac Objects, FR I radio galaxies and Flat spectrum radio quasars (FSRQs), here the correlations of the bolometric luminosities with redshifts and brightness temperatures of these objects are studied. The bolometric luminosities vary linearly with redshifts, but few objects are scattered at high redshift. The bolometric luminosity versus brightness temperature distribution shows a correlation between these two components, except a few scattered objects, mostly RBLs. The bolometric luminosities and brightness temperatures of FR I radio galaxies with low redshift (<0.1) and low spectral index (αrx < 0.75) are comparable to those of XBLs and those characteristics of FR I radio galaxies, with relatively high redshift (>0.2) and high spectral index, can be comparable with RBLs with low redshift (z < 0.5) and low bolometric luminosity. Those scattered RBLs with high redshifts (z > 0.5) are believed to be in complex environment with companion galaxies, most of these RBLs are still unresolved. The bolometric luminosity and brightness temperature of these scattered RBLs are comparable to those of quasars. The FSRQs are at high redshifts and bolometric luminosities and the brightness temperatures are also high relative to BL Lac Objects. These results support the FRI/BL Lac unification scheme. It suggests that, the FR I radio galaxies may be the parent populations of the BL Lac Objects, but it needs more investigation to confirm the unification of FR I radio galaxies, XBLs and RBLs.  相似文献   

14.
We analyze the weak component of the localized temporal pattern variability of 3 GHz solar burst observed by the Ondrejov radiospectrograph. A complex, short and weak impulsive sample from the time series was analyzed by applying a method based on the gradient pattern analysis and discrete wavelet decomposition. By analyzing canonical temporal variability patterns we show that the new method can reliably characterize the phenomenological dynamical process of short time series (N ? 103 measurements) as the radio burst addressed here. In the narrowest sense, by estimating the mutual information distance in the gradient spectra, we show that the fluctuation pattern of the short and weak 3 GHz impulsive solar burst, with energetic amplitudes <350 SFU, is closer to the intermittent and strong MHD turbulent variability pattern.  相似文献   

15.
A complex radio event was observed on January 17, 2005 with the radio-spectrograph ARTEMIS-IV, operating at Thermopylae, Greece; it was associated with an X3.8 SXR flare and two fast Halo CMEs in close succession. We present dynamic spectra of this event; the high time resolution (1/100 s) of the data in the 450–270 MHz range, makes possible the detection and analysis of the fine structure which this major radio event exhibits. The fine structure was found to match, almost, the comprehensive Ondrejov Catalogue which it refers to the spectral range 0.8–2 GHz, yet seems to produce similar fine structure with the metric range.  相似文献   

16.
We review the history of the unusual Type II supernova 1986J in the nearby spiral galaxy NGC 891. A series of VLBI observations have shown the expanding shell structure and allowed the expansion curve to be determined. The integrated radio spectrum and radio lightcurve have also been monitored. The spectrum was a power-law before 1998, after which an inversion appeared above 5 GHz. Our recent high-frequency VLBI observations showed that this inverted-spectrum emission was associated not with the shell emission, but rather with a compact component almost precisely in the center of the expanding shell. The new component is likely radio emission associated with the black-hole or neutron star compact remnant of the explosion, which would mark the first direct observational link between a modern supernova and such a compact remnant.  相似文献   

17.
The GeV observations by Fermi-LAT give us the opportunity to characterize the high-energy emission (100 MeV–300 GeV) variability properties of the BL Lac object S5 0716+714. In this study, we performed flux and spectral analysis of more than 3 year long (August 2008 to April 2012) Fermi-LAT data of the source. During this period, the source exhibits two different modes of flux variability with characteristic timescales of ∼75 and ∼140 days, respectively. We also notice that the flux variations are characterized by a weak spectral hardening. The GeV spectrum of the source shows a clear deviation from a simple power law, and is better explained by a broken power law. Similar to other bright Fermi blazars, the break energy does not vary with the source flux during the different activity states. We discuss several possible scenarios to explain the observed spectral break.  相似文献   

18.
We investigated the diurnal, seasonal and latitudinal variations of ion density Ni over the Indian low and equatorial topside ionosphere within 17.5°S to 17.5°N magnetic latitudes by combining the data from SROSS C2 and ROCSAT 1 for the 9 year period from 1995 to 2003 during solar cycle 23. The diurnal maximum density is found in the local noon or in the afternoon hours and the minimum occurs in the pre sunrise hours. The density is higher during the equinoxes as compared to that in the June and December solstice. The local time spread of the daytime maximum ion density increases with increase in solar activity. A north south asymmetry with higher ion density over northern hemisphere in the June solstice and over southern hemisphere in December solstice has been observed in moderate and high solar activity years. The crest to crest distance increases with increase in solar flux. Ion density bears a nonlinear relationship with F10.7 cm solar flux and EUV flux in general. The density increases linearly with solar flux up to ∼150 sfu (1 sfu = 10−22Wm−2Hz−1) and EUV flux up to ∼50 units (109 photons cm−2 s−1). But beyond this the density saturates. Inverse saturation and linear relationship have been observed in some season or latitude also. Inter-comparison of the three solar activity indices F10.7 cm flux, EUV flux and F10.7P (= (F10.7 + F10.7A)/2, where F10.7A is the 81 day running average value of F10.7) shows that the ion density correlates better with F10.7P and F10.7 cm fluxes. The annual average daytime total ion density from 1995 to 2003 follows a hysteresis loop as the solar cycle reverses. The ion density at 500 km over the Indian longitude sector as obtained by the international reference ionosphere is in general lower than the measured densities during moderate and high solar activity years. In low solar activity years the model densities are equal or higher than measured densities. The IRI EIA peaks are symmetric (±10°) in equinox while densities are higher at 10°N in June solstice and at 10°S in the December solstice. The model density follows F10.7 linearly up to about F10.7 > ∼150 sfu and then saturates.  相似文献   

19.
Very low frequency interferometry among two astronomical experiments has been proposed and accepted for further study for the second phase of China’s lunar exploration programme (the Chang’E Programme), which is envisaged to operate a lander and a rover on the surface of the moon. This experiment is an interferometer experiment in the very low frequency (VLF, f < 15 MHz) regime of radio frequencies with at least degree-level angular resolution. The goals include observing solar storm activities, Coronal Mass Ejections, Auroral Kilometric Radiation, and planetary radiation in the solar system, studying the origin of Cosmic Rays, spectral properties of pulsars, surveying ionized hydrogen in the Galaxy, and exploring coherent radio emissions.  相似文献   

20.
The 0 °C isotherm height is an important parameter for prediction of rain attenuation of microwave and millimeter wave for Earth-space communication. The variations of 0 °C isotherm heights for two monsoon seasons have been studied based on an analysis of radiosonde over three stations. The exceedence probability statistics of rain height are compared between the two seasons. The results on the 0 °C isotherm height can be utilized for the estimation of attenuation of microwave and millimeter wave due to rain over Earth-space paths. Attenuations of radio wave due to rain at frequencies above 10 GHz and above have also been estimated using the 0 °C isotherm height so derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号