首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The original design by J. A. Simpson of the neutron monitor enabled continuous monitoring of the primary cosmic-ray flux by ground-based recordings of the nucleonic component with only a rather simple correction for atmospheric effects. Simpson (1957) extended the original pile to the 12 counter IGY neutron monitor which was deployed in a world wide network during the International Geophysical Year 1957/8. The desirability for monitors with higher counting rates became evident soon afterwards. Subsequently the NM64 super neutron monitor was designed by H. Carmichael for deployment in time for the International Quiet Sun Year 1964. Using unusually large 10BF3 proportional counters made at Chalk River, Hatton and Carmichael (1964) studied comprehensively the experimental design of the NM64. Consequently the efficiency of neutron counters to record evaporation neutrons produced in the lead of a monitor increased from 1.9% for the IGY to 5.7% for the NM64, an increase of 3.3 times the counting rate per unit area of lead producer. During the years much attention was given to the neutron multiplicity spectrum in neutron monitors. This spectrum is related to the energy spectrum of the nucleonic component incident on the neutron monitor, but is only weakly dependent on the spectrum of galactic cosmic rays at the top of the atmosphere. Contrary to galactic cosmic rays, solar flare protons and neutrons are observed predominantly as single counts per interaction, in multiplicity 1, because of the softness of solar flare particle energy spectra. Neutron monitors have also been specially designed to record solar neutrons with increased sensitivity. Newly developed 3He counters with a largely reduced thermal neutron absorption mean free path should lead to improved efficiency in recording primary cosmic radiation. Design criteria are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Pyle  Roger 《Space Science Reviews》2000,93(1-2):381-400
Over the last few years, great strides have been made in providing access to data, both archival and near-real-time, for researchers throughout the field of Space Science. Neutron monitor data, in particular, has for many decades enjoyed a unique history of world-wide collaborative efforts and the unrestricted sharing of datasets among researchers. This is in large part due to the nature of the measurements made by neutron monitors; an understanding of the time-varying, anisotropic galactic or solar cosmic ray spectrum in most cases requires that data from a large array of stations needs to be considered, and often that array must be global in scope. This paper will attempt to summarize the current availability of neutron monitor data, by (a) describing the current status of archival data and near-real-time data access to neutron monitor data, and (b) looking into the future, with an emphasis on the use of the World Wide Web and other electronic means as the source mechanism. Public outreach efforts using active neutron monitors will also be discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Duldig  Marc L. 《Space Science Reviews》2000,93(1-2):207-226
Muon observations are complementary to neutron monitor observations but there are some important differences in the two techniques. Unlike neutron monitors, muon telescope systems use coincidence techniques to obtain directional information about the arriving particle. Neutron monitor observations require simple corrections for pressure variations to compensate for the varying mass of atmospheric absorber over a site. In contrast, muon observations require additional corrections for the positive and negative temperature effects. Muon observations commenced many years before neutron monitors were constructed. Thus, muon data over a larger number of solar cycles is available to study solar modulation on anisotropies and other cosmic ray variations. The solar diurnal and semi-diurnal variations have been studied for many years. Using the techniques of Bieber and Chen it has been possible to derive the radial gradient, parallel mean-free path and symmetric latitude gradient of cosmic rays for rigidities <200 GV. The radial gradient varies with the 11-year solar activity cycle whereas the parallel mean-free path appears to vary with the 22-year solar magnetic cycle. The symmetric latitudinal gradient reverses at each solar polarity reversal. These results are in general agreement with predictions from modulation models. In undertaking these analyses the ratio of the parallel to perpendicular mean-free path must be assumed. There is strong contention in the literature about the correct value to employ but the results are sufficiently robust for this to be, at most, a minor problem. An asymmetric latitude gradient of highly variable nature has been found. These observations do not support current modulation models. Our view of the sidereal variation has undergone a revolution in recent times. Nagashima, Fujimoto and Jacklyn proposed a narrow Tail-In source anisotropy and separate Loss-Cone anisotropy as being responsible for the observed variations. A new analysis technique, more amenable to such structures, was developed by Japanese and Australian researchers. They confirmed the existence of the two anisotropies. However, they found that the Tail-In anisotropy is asymmetric and that both anisotropies had different positions from the prediction. Most 27-day modulations are observed at neutron monitor rigidities but not so readily at higher rigidities. An exception to this is the Isotropic Intensity Wave modulation observed in the early 1980s and again in 1991. This modulation is very strongly related to the heliospheric sector structure and implies a significantly different cosmic ray density on either side of the neutral sheet. The interpretation of most cosmic ray modulation phenomena requires good latitude coverage in both hemispheres. The closure of many muon observatories is a matter of concern. In the northern hemisphere a few new instruments are being constructed and spatial coverage is barely adequate. In the southern hemisphere the situation is far worse with the possibility that within a decade only the Mawson observatory in Antarctica will still be in operation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Lockwood  J.A.  Debrunner  H. 《Space Science Reviews》1999,88(3-4):483-500
We discuss the important parameters of solar neutron and proton emissions that can be determined by measurements with neutron monitors at the Earth. First, the methods of analysis for solar neutron events detected by neutron monitors are presented. Illustrations are given to show how these measurements can be used to understand the physics of the neutron production at the Sun. Second, the analytical methods for high-energy interplanetary solar proton events are presented. We then indicate how these observations of interplanetary solar protons can be used to infer the proton acceleration mechanisms at or near the Sun. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Beginning in the early 1950s, data from neutron monitors placed the taxonomy of cosmic ray temporal variations on a firm footing, extended the observations of the Sun as a transient source of high energy particles and laid the foundation of our early concepts of a heliosphere. The first major impact of the arrival of the Space Age in 1957 on our understanding of cosmic rays came from spacecraft operating beyond the confines of our magnetosphere. These new observations showed that Forbush decreases were caused by interplanetary disturbances and not by changes in the geomagnetic field; the existence of both the predicted solar wind and interplanetary magnetic field was confirmed; the Sun was revealed as a frequent source of energetic ions and electrons in the 10–100 MeV range; and a number of new, low-energy particle populations was discovered. Neutron monitor data were of great value in interpreting many of these new results. With the launch of IMP 6 in 1971, followed by a number of other spacecraft, long-term monitoring of low and medium energy galactic and anomalous cosmic rays and solar and interplanetary energetic particles, and the interplanetary medium were available on a continuous basis. Many synoptic studies have been carried out using both neutron monitor and space observations. The data from the Pioneer 10/11 and Voyagers 1/2 deep space missions and the journey of Ulysses over the region of the solar poles have significantly extended our knowledge of the heliosphere and have provided enhanced understanding of many effects that were first identified in the neutron monitor data. Solar observations are a special area of space studies that has had great impact on interpreting results from neutron monitors, in particular the identification of coronal holes as the source of high-speed solar wind streams and the recognition of the importance of coronal mass ejections in producing interplanetary disturbances and accelerating solar energetic particles. In the future, with the new emphasis on carefully intercalibrated networks of neutron monitors and the improved instrumentation for space studies, these symbionic relations should prove to be even more productive in extending our understanding of the acceleration and transport of energetic particles in our heliosphere. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The invention of the neutron monitor pile for the study of cosmic-ray intensity-time and energy changes began with the discovery in 1948 that the nucleonic component cascade in the atmosphere had a huge geomagnetic latitude dependence. For example, between 0° and 60° this dependence was a ∼ 200–400% effect – depending on altitude – thus opening the opportunity to measure the intensity changes in the arriving cosmic-ray nuclei down to ∼1–2 GeV nucl−1 for the first time. In these measurements the fast (high energy) neutron intensity was shown to be a surrogate for the nuclear cascade intensity in the atmosphere. The development of the neutron monitor in 1948–1951 and the first geomagnetic latitude network will be discussed. Among its early applications were: (1) to prove that there exists interplanetary solar modulation of galactic cosmic-rays (1952), and; (2) to provide the evidence for a dynamical heliosphere (1956). With the world-wide distribution of neutron monitor stations that are presently operating (∼ 50) many novel investigations are still to be carried out, especially in collaborations with spacecraft experiments. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Relativistic solar proton events   总被引:1,自引:0,他引:1  
Energetic solar flare particles contain rich information concerning mechanisms of particle acceleration on the Sun and subsequent transport through turbulent interplanetary space. Even the most energetic particles, in particular protons with kinetic energy above 500 MeV, may undergo coronal and interplanetary propagation effects, disturbing their accelerated injection spectrum after release from the solar flare. Relativistic solar proton events are recorded by neutron monitors at ground level. A detailed knowledge of the response of these ground-based detectors to the impact by a beam of protons on the top of the atmosphere is required to analyze these observations. The spectral index of arriving protons can be obtained from the response of the world-wide network of neutron monitors provided their directional anisotropy is known. The spectral index may also by determined from the relative enhancements in count rates of two similar detectors at different altitudes but similar asymptotic cones of acceptances, or from the relative enhancements of two detectors with different spectral sensitivities but at the same location of high latitude. Ground level enhancements from solar flare protons have been recorded at Sanae, Antarctica, since 1971 by two neutron monitors with different sensitivities to primary protons in the rigidity range from 1 GV to 5 GV. Spectral indexes of about 20 of these more energetic solar flare proton events have been determined from the two detector enhancements recorded at Sanae. These indexes do not show any increase (softening of the relativistic proton spectra) with increasing heliolongitude away from the preferred IMF connection region as was obtained for 20–80 MeV protons. Furthermore, most of the enhanced count rates show fluctuations larger than statistical, indicative of propagation in a mostly turbulent interplanetary magnetic field.  相似文献   

8.
The experimental measurements of the neutron flux and energy spectrum in space since 1964 are reviewed and related to the theoretical predictions. A discussion of the neutron sources is presented. The difficulties associated with neutron measurements of both the atmospheric neutron leakage flux and solar neutrons are included. Particular emphasis is placed upon the neutron leakage flux and energy measurements at energies greater than about 1 MeV. The possibilities of CRAND as a source for the energetic trapped protons are discussed in light of recent measurements of the 10–100 MeV neutron flux. The current status of the solar neutron flux observations is also presented.The primary purposes of neutron measurements in space have been to determine the neutron leakage flux from the atmosphere of the Earth and the solar neutron flux. As a consequence of the inefficient methods for neutron detection and the difficulties of conducting the measurements in the presence of the galactic and solar cosmic-ray backgrounds, the experimental results are very conflicting. It is the purpose of this review to interpret and discuss recent neutron measurements. In order to understand these results the theoretical predictions of the neutron fluxes and energy spectra from possible neutron sources will be briefly presented. Since comparisons of the different neutron measurements depend critically upon the experimental techniques, we will briefly discuss neutron detection methods applicable to space measurements. The emphasis will be upon measurements since 1964 made outside the Earth's atmosphere, but considerable reference will be made to high energy neutron experiments conducted within the Earth's atmosphere at < 10g cm-2 altitude. A review of earlier neutron measurements of terrestrial and solar neutrons has been made by Haymes (1965).  相似文献   

9.
Clem  John M.  Dorman  Lev I. 《Space Science Reviews》2000,93(1-2):335-359
The neutron monitor provides continuous ground-based recording of the hadronic component in atmospheric secondary radiation which is related to primary cosmic rays. Simpson (1948) discovered that the latitude variation of the secondary hadronic component was considerably larger than the muon component suggesting the response of a neutron monitor is more sensitive to lower energies in the primary spectrum. The different methods of determining the neutron monitor response function of primary cosmic rays are reviewed and discussed including early and recent results. The authors also provide results from a new calculation (Clem, 1999) including angle dependent yield functions for different neutron monitor types which are calculated using a simulation of cosmic ray air showers combined with a detection efficiency simulation for different secondary particle species. Results are shown for IGY and NM64 configurations using the standard 10BF3 detectors and the new 3He detectors to be used in the Spaceship Earth Project (Bieber et al., 1995). The method of calculation is described in detail and the results are compared with measurements and previous calculations. A summary of future goals is discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
薛秀生  邓勇 《航空动力学报》1996,11(4):426-428,442
介绍一种高温及红外辐射环境中的火焰快速监测新技术。应用此技术研制的国内首套加力点火器内部火焰光纤监测装置,成功地应用于工程实验测量,解决了一项加力燃烧室测试难题。此类装置已成为发动机加力点火器出厂检验及实验中的一种必备的监测设备  相似文献   

11.
A real-time terrain database integrity monitor for synthetic vision systems (SVS) that are to be used in civil aviation is presented. SVS provides pilots with advanced display technology including terrain information as well as other information about the external environment such as obstacles and traffic. The use of SVS to support strategic and tactical decision-making and the compelling nature of the terrain depiction may require terrain database server certification at the essential and flight-critical levels. SVS and terrain database characteristics are discussed and a failure model is identified. Real-time integrity monitors are proposed that check the consistency between terrain profiles described by the database and terrain profiles that are sensed in flight by either a downward-looking (DWL) sensor or a forward-looking (FWL) season A DWL sensor scheme is discussed in detail and it is shown that this scheme can provide the necessary integrity required for an essential certification of a terrain database server.  相似文献   

12.
Shea  M.A.  Smart  D.F. 《Space Science Reviews》2000,93(1-2):229-262
Cosmic radiation has been measured by a variety of techniques since 1933. This paper presents the evolution of data acquisition, processing, and availability of cosmic radiation data from the early years to the present time. Information on the worldwide network of neutron monitor stations and the availability of these cosmic radiation records is included. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
A model of the time evolving relativistic solar proton spectra for the 7 May 1978 ground level solar cosmic ray event is presented. This event, with associated cosmic ray neutron monitor increases of over 100% and containing relativistic particles with energies greater than 10 GeV/nucleon was characterized by an extreme anisotropy and a rapidly evolving spectrum, particularly during the initial phase. The observational data from cosmic ray neutron monitors viewing in the anti-Sun direction (180° away from the initial solar particle direction) indicates that a back scatter pulse of 4% of the primary pulse was observed at the Earth 20 min after the event onset. Previous attempts to model the solar particle spectrum found consistent and systematic differences between the theoretically calculated cosmic ray increase and the actual increase as observed by neutron monitors. In order to reconcile these differences, we have concluded that the observational data give evidence for a rigidity dependent release of relativistic solar protons from the solar corona during the very early stages of this event.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

14.
Anomalous cosmic ray (ACR) intensities at 1 AU at solar minimum generally track galactic cosmic ray (GCR) intensities such as those measured by neutron monitors, albeit with differences between solar polarity cycles. The unusual cycle 23/24 solar minimum was long-lasting with very low sunspot numbers and significantly reduced interplanetary magnetic field strength and solar wind dynamic pressure and turbulence, but also featured a heliospheric current sheet tilt that remained high for an extended period. Peak ACR intensities did not recover to the maximum values reached during the last two A>0 solar minima and just barely reached the last A<0 levels. However, GCR intensities in 2009 (neutron monitor rates and also at ~200 MeV/nucleon) were the highest recorded during the last 50 years, indicating their intensities were not as heavily modulated during their transport from the outer heliosphere. This unexpected difference in the behavior of ACRs and GCRs remains unexplained, but suggests that either the ACR source intensity may have weakened since the last A<0 epoch, or perhaps that ACR intensities at 1 AU in the ecliptic may be more sensitive than GCRs to the higher tilt angle. This seems plausible if the ACR source intensity is greater at low latitudes during A<0 cycles, while the GCR distribution at the heliospheric boundary is more uniform in latitude. Shortly after an abrupt increase in the current sheet tilt angle in late 2009, both ACR and GCR intensities showed dramatic decreases, marking the end of solar minimum modulation conditions for this cycle.  相似文献   

15.
A review is presented of solar neutron observation by ground-based neutron monitors (NM), focusing on the five solar neutron events of 1980 June 7, 1980 June 21, 1980 November 6, 1982 November 26, and 1984 April 25 observed by the Tokyo NM. These events are analyzed by comparison with the time profiles of gamma-rays observed by the Gamma-Ray Spectrometer (GRS) on the Solar Maximum Mission (SMM) satellite and with the enhancements of counting rate observed at various NM stations in the solar neutron event of 1982 June 3.The energy range of solar neutrons observed by the NM is estimated in each event, based on some simple assumptions, using the gamma-ray data from the GRS and decay proton data from the ISEE-3 spacecraft. It is shown that these enhancements can be almost completely explained by the continuous emission of solar neutrons for several minutes at the flare. Finally, the effective detection and the newly found possibility to predict, in the short term, the occurrence time of a solar neutron event, and the plans for observation of solar neutrons by the ground-based NM stations are presented.  相似文献   

16.
Cosmic rays provide a diagnostic tool to analyze processes in interplanetary space and at the Sun. Cosmic rays also directly affect the terrestrial environment and serve as indicators of solar variability and non anthropogenic climatic changes on Earth at present and in the distant past. After the invention of the neutron monitor by John A. Simpson in 1948, an international network of cosmic ray detectors developed in a cooperative effort to examine temporal and spatial variations in our space environment. The resulting datasets represent the longest continuous, high time resolution series of particle radiation measurement in space science. At present, the neutron monitor network is complemented by spacecraft instrumentation to study solar-terrestrial correlated phenomena. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The US Navy has more than 300 ships equipped with over 500 PHALANX weapon systems. Ordalts (ordnance alterations) and casreps (casualty reports) are received frequently by Naval Ordnance. Ordalts are done when parts need replacing or a design is exchanged for an old. Casreps are an urgent request for parts or service. Information pertaining to ordalts and casreps is put into several databases, which are continually updated and used in reports among the PHALANX community. Ship locations are used for sending parts and/or assistance to the ship. The ordalt and casrep requests have been combined with the ship locations report to produce a more efficient manner in which to monitor ordalt requests, casrep requests and ship locations, using a sample database containing ordalt and casrep data and ship locations. The database is interfaced to a computer graphics program that monitors ship movement throughout the world and supplies information from the database whenever requested. The hardware and software used to implement the project are described  相似文献   

18.
煤油燃料超燃冲压发动机燃烧特性实验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
蒋安林  田野  钟富宇  乐嘉陵 《推进技术》2021,42(10):2277-2286
为研究空气节流时序对超燃冲压发动机点火和火焰稳定的影响,本文通过实验方法研究了13个状态的煤油燃料超燃冲压发动机的燃烧特性,煤油燃烧通过先锋氢气和节流空气增强稳定性。通过两个固定位置的压力传感器来监测火焰稳定状态,采用纹影和OH-PLIF相结合的测量手段,获得了流场结构和火焰发展信息。发动机入口来流条件为Ma = 2.0,总温950 K,总压0.82 MPa。在空气节流的作用下,煤油被先锋火焰引燃;在先锋氢撤除后,煤油仍然可以稳定燃烧。在扩张段中,空气节流和燃烧共同作用产生的激波串移动速度约为52 m/s,但在凹槽内其速度仅为3.7 m/s。通过监测点压力变化情况可以区分所研究状态的火焰稳定与否,通过对13个研究状态的考察,获得了火焰稳定临界曲线。当所研究状态点在临界曲线右上方区域时,火焰状态稳定;当所研究状态点在临界曲线左下方区域时,火焰将被吹熄;当所研究状态点在临界曲线上时,火焰不稳定,在空气节流撤除之前将被吹熄。  相似文献   

19.
State-of-charge indication for a secondary battery is becoming increasingly important for battery-operated electronics. Consumers are demanding fast charging times, increased battery lifetime, and fuel gauge capabilities. All of these demands require that the state of charge within a battery be known. One of the simplest methods employed to determine state of charge is to monitor the voltage of the battery. However, this method alone is not a good indicator of battery energy, since both NiMH and NiCd batteries have voltage-versus-energy curves that are essentially flat. This paper presents a more effective method of determining the state of charge in secondary cell batteries. A NiMH battery is used as our test vehicle, since it is one of the more difficult batteries to determine state of charge. This method monitors the battery's temperature, voltage, and discharge/charge rate. A microcontroller then manipulates the information, using look-up tables to determine the state of charge. Also, by modifying the look-up tables, this technique can be employed in many other battery technologies and is not limited to NiMH  相似文献   

20.
Attitude estimation algorithms for the Thrusted Vector Mission which determine attitude based on Sun sensor and very coarse albedo sensor measurements are presented. On the basis of these measurements, it has been demonstrated by comparison with more accurate gyro-based attitude that it is possible to estimate three-axis attitude with an average error per axis of 11 deg. Most of this error is about the Sun direction. Both deterministic quick-look and optimal estimates are examined  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号