首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
详细介绍西欧各国研制固体火箭推进剂的情况及其进展.对双基推进剂,包括浇注双基推进剂、压伸双基推进剂、复合改性浇注双基推进剂和复合推进剂,以及一些粘合剂的特性和发展分别作了叙述.探讨在固体推进剂中加入硼粉后性能的改进以及所带来的问题.今后固体推进剂发展的重点将是:提高总固体含量,进一步提高燃速,改进药柱的力学性能,降低温度敏感系数,以及降低推进剂成本.  相似文献   

2.
考虑泊松比的固体发动机装药贮存寿命预估   总被引:2,自引:0,他引:2  
以含单个小孔隙的立方体为代表性体积单元,结合弹性力学公式,推导了固体推进剂空穴率与瞬时泊松比的关系,得到泊松比随推进剂老化的变化规律.通过固体推进剂加速老化试验,得到固体推进剂瞬时模量及最大延伸率随贮存时间的变化规律.以固体推进剂瞬时模量和瞬时泊松比为老化参数,结合三维粘弹性有限元计算方法,计算了某发动机装药结构不同贮...  相似文献   

3.
这项工作是由赫克里斯公司阿里根尼弹道试验室完成的,是为美国海军战术导弹的应用而改进高性能硝酸酯增塑推进剂工作的一部分。总的目的是研制一种性能卓越的推进剂,它在舰队防御环境下不会发生脆变。尤其需要一种推进剂能满足或者超过美国海军近代高性能验证发动机(HPDM)计划的要求。方法是将聚乙二醇预聚物用于混合增塑剂(50/50N G—BTTN)作为非脆变粘合剂的主要成分。这种增塑剂系统已在其它的赫克里斯计划中经过验证,与 NG 或 BTTN 晶种接触,即使经过长期的—54℃~—12℃之间的温度循环也不会发生脆变。以1磅规模对固体含量为73%~80%的推进剂进行了试验,以调节工艺性能、力学性能。成功地研制出了一种能达到 HPDM 计划要求的固体含量为73%的非脆变推进剂。80%固体含量推进剂的研制工作表明,这类推进剂是可行的,但还需要进一步的研究。  相似文献   

4.
本文介绍了乙烯基二茂铁与丁二烯的共聚物及其制备方法。当从偶氮—双—(2——甲基——5——羟基——戊腈),偶氮一双——(羟乙基——2——甲基丙酸酯)和偶氮——双——(2——甲基——3——羟基——丙腈)偶氮类引发剂中,选择一种引发剂引发进行聚合时,在有机溶剂中生成共聚物。该共聚物可用作固体推进剂配方的粘合剂,并用来提高固体推进剂的燃速。  相似文献   

5.
本专利叙述一种含羟基聚丁二烯聚合物和固体氧化剂的高固体含量固体推进剂新配方。这种推进剂的改进是在配方中加入一种少量的有效化合物,提高其适用期,并降低药桨粘度。添加的化合物是从通式为(?)或(?)的化合物中选择的,式中 R 为氢、ω—羟烷基、苯基、环已基,(?)R′为ω—羟烷基或羟苯基;R″为烷基;R′″为烷基或芳香基;m 和 n 为1~20的整数。本发明还叙了述这种固体推进剂配方的拟定方法以及浇注和固化。  相似文献   

6.
一、前言随着战略及战术武器的发展,对固体推进剂的要求越来越高,不仅要求能量高(大于250秒)、力学性能好,而且使用温度范围要宽、安全贮存性能要好。要满足以上要求,单纯地在复合推进剂和改性双基推进剂的原有基础上改进是比较困难的。目前固体推进剂发展的主要趋势是:发挥复合推进剂和改性双基推进剂各自的优点,突破这两类推进剂的界限而发展成为高能交联推进剂。从美国 K.Klager 提出的固体推进剂发展历程(表1)中可以清楚地看到这种趋势。  相似文献   

7.
综述了国内外数值计算技术在固体推进剂研制生产中的应用。内容涉及固体推进剂计算机辅助配方设计、固体推进剂性能预示、含能材料分子设计、化学合成软件和固体推进剂计算机辅助制造。  相似文献   

8.
针对国内现有无损探伤方法无法检测固体推进剂微观缺陷的情况,引入光致正电子湮灭分析方法,即PIPA(Photon Induced Positron Annihilation)。该方法利用加速器产生的高能光子引发的正电子与固体推进剂作用来检测其缺陷,能在固体推进剂宏观缺陷出现前检测出其微观结构的变化。介绍了PIPA原理,并通过试验讨论了温度、拉伸速率及推进剂的力学性能等因素对利用PIPA进行固体推进剂探伤结果的影响,所得结论与固体推进剂的常规测试具有一致性,证明了PIPA用于固体推进剂无损探伤的可行性。  相似文献   

9.
含CL-20固体推进剂研究现状   总被引:1,自引:0,他引:1  
综述了含CL-20(六硝基六氮杂异伍兹烷)固体推进剂,包括改性双基推进剂、高能低特征信号推进剂、NEPE推进剂以及其他类型固体推进剂的研究现状;主要涉及引入CL-20后固体推进剂的热分解特性、能量特性、燃烧性能、力学性能及安全性能等方面的内容;最后,总结了目前CL-20及含CL-20固体推进剂在实际的工程化应用过程中依然存在的一些尚未解决的难题,并指出了CL-20及含CL-20固体推进剂今后的研究方向及重点。  相似文献   

10.
针对机载战术导弹发动机的长寿命使用要求,开展了固体推进剂高温加速老化试验和发动机自然贮存解剖试验,并分别测试了固体推进剂在不同环境温度下的力学性能,对比了高温加速老化和发动机自然贮存老化之间的差异.结果表明,该固体推进剂在高温加速老化和长期自然贮存后,最大延伸率均明显下降,发动机自然贮存13 a后,推进剂的延伸率略优于...  相似文献   

11.
本文论述了战术导弹动力装置的特点及采用固体推进剂的动力装置在战术导弹中的地位;分析了国外战术导弹所用固体推进剂的研制与发展特点;并根据未来战术导弹对动力装置的要求,预测了战术导弹应用的固体推进剂的发展.过去提出的比冲、比重、力学性能、玻璃化温度、压力指数、燃速温度敏感系数等所谓八大指标,已不能完全适应未来发展的需要,还要求更多的性能如燃烧特性、老化特性、或某神单项突出的特性如无烟、承受较大冲击过载等,以满足多种动力装置发展的需要.进一步改善推进剂的使用性、适应性、品种配套、降低成本都将是固体推进剂发展的重要课题,“混用”或组合将成为显著改善推进剂性能的重要途径.  相似文献   

12.
根据限制战略武器条约,俄罗斯将有大量的洲际弹道导弹要拆除,这些导弹的推进剂数以万吨计,有液体推进剂,更有固体推进剂。这些推进剂如何处理,特别是如何处理固体推进剂,是一个伤脑筋的问题。 为了解决这个问题,锡奥科尔公司为首的几家美国公司和俄国ASKOND公司组成了一个联合小组,打算对固体推进剂进行还原研究,目标是把固体推进剂变成民用工业需要的化工产品,以免把它们烧毁而白白浪费掉。  相似文献   

13.
去年7月12日、9月13日,美国喷气航空固体推进公司成功地进行了M—X 末级发动机二比一缩比发动机首次和第二次地面点火试验。此发动机采用该公司推进剂研制组研制的以PEG/FEFO 为粘合剂系统的复合推进剂,发动机装药约2000磅(907.19公斤),燃烧时间约26秒.据该公司称,试验成功地验证了独特的整体点火器方案(Integral Igniter Con—cept)、高性能推进剂、新式喷管和绝缘材料,并说:“所采用的推进剂是目前战略  相似文献   

14.
<正>固体推进剂是固体火箭发动机的动力源用材料,特别是端羟基聚丁二稀(HTPB)、高能硝酸酯增塑聚醚(NEPE)推进剂的出现,使固体推进剂更加广泛应用于战术、战略导弹和航天运载领域中,固体推进剂的性能也直接影响导弹武器的作战效能和生存能力。目前,各国都在针对战略、战术武器系统生存环境要求的提高,积极探索、开发以高能量密度材料合成及应用为主体的新型高性能推进剂,同时,也积极追求固体推进剂的低特征  相似文献   

15.
阿里安5的推进系统由三个部分组成,即固体推进剂发动机、低温主级的火神发动机和可贮推进剂级的沃坦(Wotan)发动机。 一、固体推进剂发动机 固体推进剂发动机是两个固体加速级(即助推器)的主要部件。这种发动机长26米,直径3米,重约260吨,其中230吨为推进剂。  相似文献   

16.
国外固体推进剂在近20年来有了很大发展,在推进剂的品种和性能上都有了不少改进和提高.随着战略及战术武器性能的提高,对固体推进剂的要求越来越高.不仅要求能量高(>250秒),力学性能好(尤其在低温).而且还要使用温度范围宽,安全  相似文献   

17.
针对复合固体推进剂材料,建立了与温度相耦合的蠕变损伤演变模型,进行了单轴和双轴条件下蠕变破断试验,确定了材料参数.该模型对复合固体推进剂的应力分析、寿命预估具有应用价值.  相似文献   

18.
高能固体推进剂技术未来发展展望   总被引:22,自引:5,他引:22  
在分析研究现代固体推进剂技术发展的基础上,归纳总结了固体推进剂技术的发展规律及技术创新本质。结合国外发展现状,提出了高能固体推进剂技术未来发展的主要方向及重点。  相似文献   

19.
推进剂内部和推进剂—包复层界面的裂纹、气泡和脱粘的 X-射线实时显像检测系统的产生是固体推进剂火箭发动机质量控制的重大突破。在此之前,用成本很高的普通胶片 X-射线照相法进行抽样检验,而且对送检的每台发动机只能沿推进剂—包复层界面切线方向每隔60度或120度作局部 X-射线检查。新方法具有自动地连续100%检验能力,其成本低于普通的胶  相似文献   

20.
固体贫氧推进剂与固冲组合发动机组成一种新的推进系统,可使推进系统比冲成倍增加,固体贫氧推进剂具有氧化剂含量低,金属燃料添加量增加的特点。目前,固体贫氧推进剂可分为贫氧烟火推进剂和贫氧复合推进剂两大类,每类各有其优缺点,文中讨论了固体贫氧推进剂的评价指标并对其配方进行了比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号