首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is a case study of a chain of three magnetic storms with a special attention to the particle dynamics based on CORONAS-F and SERVIS-1 low altitude satellite measurements. Solar proton penetration inside the polar cap and inner magnetosphere and dynamics at different phases of the magnetic storms was studied. We found, that solar protons were captured to the inner radiation belt at the recovery phase of the first and the second magnetic storms and additionally accelerated during the last one. No evidence of sudden commencement (SC) particle injection was found. Enhanced solar proton belt intensity with small pitch angles decreased slowly during satellite orbits for 30 days until the next magnetic storm. Then in 20–30 h we registered strong precipitation of these protons followed by the trapped proton flux dropout. Intensity decrease was more pronounced at lower altitudes and higher particle energies.  相似文献   

2.
利用IGRF2000模式计算了几个典型轨道辐射带粒子环境并与IGRF1970模式计算的结果进行了比较。计算结果表明,在辐射带的低部,对应某些倾角的能量大于0.1MeV质子的轨道积分通量变化达到2个量级,而通量大10MeV的辐射带质子的轨道积分通量变化达到1个量级;轨道积分通量的最大值变化为1个量级。能量大于0.04MeV辐射带电子的轨道积分通量变化在某些倾角达到3个量级,但轨道积分最大值的变化低于1个量级。1000km以上高度辐射带粒子环境的变化很小。  相似文献   

3.
We have analyzed the trapped electron data (0.19–3.2 MeV) taken by the Japanese OHZORA satellite operated at 350–850 km altitude in polar orbit during 1984–1987 near solar minimum. The electron observations reveal all the global attributes of the quiet-time electron radiation belts, such as the South Atlantic Anomaly, the electron “slot”, and the outer radiation belt regions. The electron data are in general agreement with the NASA AE-8 electron model, but there are differences, particularly with respect to distinctive local-time variations in the slot region. In this paper, we present results from analyses of variations of the electron pitch angle distributions with local time, L-shell and altitude.  相似文献   

4.
We present measurements of LET spectra for near earth orbits with various inclinations and altitudes. A comparison with calculated LET spectra shows that the contribution from direct ionizing galactic cosmic rays is well described by the models. An additional contribution to the spectra originates from stopping protons and from nuclear interactions of particles with material. In the case of an interaction a large amount of energy is deposited in a small volume by target recoils or target fragments. These events will be called short range (SR) events. For a low inclination orbit radiation belt protons are the main source of these events while galactic protons become more important when increasing the inclination to near polar orbits. We show that the contribution of SR events for orbits with low altitude (324 km) and 57 degrees inclination is comparable to that for an orbit with 28 degrees inclination at a high altitude (510 km).  相似文献   

5.
利用NOAA-15卫星1998年到2011年近13年的高能质子全向通量观测资料, 分析了一个太阳活动周内, 低高度内辐射带高能质子通量的分布变化特性及其物理原因, 比较了观测结果与AP8模型的不同. 研究表明, 低高度内辐射带高能质子通量与太阳活动水平的反相关关系与磁壳参数L值及磁场B值有关; L值越低, B值越大的空间点, 其高能质子通量与太阳活动水平的反向相关性越明显. 高能质子通量随太阳活动水平的变化存在明显滞后现象, L值越高、 B值越小的空间点, 滞后现象就越明显, 滞后严重时可以达到一年左右的时间; 这种滞后现象反映出低高度内辐射带高能质子的源与损失达到平衡是一个中长期过程. 通过与AP8模型计算结果的比较分析可以看出, 利用AP8模型时, 仅考虑地磁场长期变化对质子通量的影响可能会夸大低高度内辐射带局部高能质子通量的增强.   相似文献   

6.
At the interface between the upper atmosphere and the radiation belt region, there exists a secondary radiation belt consisting mainly of energetic ions that have become neutralized in the ring current and the main radiation belt and then re-ionized by collisions in the inner exosphere. The time history of the proton fluxes in the 0.64 – 35 MeV energy range was traced in the equatorial region beneath the main radiation belts during the three year period from 21 February 1984 to 26 March 1987 using data obtained with the HEP experiment on board the Japanese OHZORA satellite. During most of this period a fairly small proton flux of −1.2 cm−2 s−1 sr−1 was detected on geomagnetic field lines in the range 1.05 < L < 1.15. We report a few surprisingly deep and rapid flux decreases (flux reduction by typically two orders of magnitude). These flux decreases were also long in duration (lasting up to three months). We also registered abrupt flux increases where the magnitude of the proton flux enhancements could reach three orders of magnitude with an enhancement duration of 1–3 days. Possible reasons for these unexpected phenomena are discussed.  相似文献   

7.
Preliminary results of the EU INTAS Project 00810, which aims to improve the methods of safeguarding satellites in the Earth’s magnetosphere from the negative effects of the space environment, are presented. Anomaly data from the “Kosmos” series satellites in the period 1971–1999 are combined in one database, together with similar information on other spacecraft. This database contains, beyond the anomaly information, various characteristics of the space weather: geomagnetic activity indices (Ap, AE and Dst), fluxes and fluences of electrons and protons at different energies, high energy cosmic ray variations and other solar, interplanetary and solar wind data. A comparative analysis of the distribution of each of these parameters relative to satellite anomalies was carried out for the total number of anomalies (about 6000 events), and separately for high (5000 events) and low (about 800 events) altitude orbit satellites. No relation was found between low and high altitude satellite anomalies. Daily numbers of satellite anomalies, averaged by a superposed epoch method around sudden storm commencements and proton event onsets for high (>1500 km) and low (<1500 km) altitude orbits revealed a big difference in a behavior. Satellites were divided on several groups according to the orbital characteristics (altitude and inclination). The relation of satellite anomalies to the environmental parameters was found to be different for various orbits that should be taken into account under developing of the anomaly frequency models.  相似文献   

8.
The risks to aircrew health posed by prolonged exposure to low levels of ionizing radiation at aircraft altitudes have recently received renewed attention. Civil and military aircraft currently on the drawing board are expected to operate at higher altitudes (>12 km) and fly longer ranges than do existing aircraft, thereby exposing their crews to higher levels of ionizing radiation, for longer periods of time. We are currently carrying out dosimetric measurements of the ionizing radiation environment at approximately 20 km altitude using portable Si detectors aboard NASA's two ER-2 high altitude research aircraft. The instruments, Liulin-4J, have been extensively calibrated at several particle accelerators. With these instruments, we can measure not only absorbed dose, but also variation of the absorbed dose as a function of time. We report radiation dose measurements as function of time, altitude, and latitude for several ER-2 missions.  相似文献   

9.
利用NOAA-12卫星数据对空间环境平静时期太阳同步轨道处辐射带质子投掷角分布进行了研究. 根据投掷角分布的经验公式,计算出90°投掷角的质子方向强度和各向异性指数n. 质子投掷角分布按n的取值范围可分为三类,即90°峰值分布、平顶分布和蝴蝶形分布. 观测证实,对于辐射带质子,三种分布类型均存在并且具有明显的空间区域特征. 在内辐射带边缘地区90°峰值分布占主要优势;在外辐射带高L值区域,90°峰值分布明显减少,平顶分布和蝴蝶形分布逐渐增多. 针对90°峰值分布,研究了质子强度各向异性的区域分布特征,对于内辐射带区域,n值随L值的增大而增大,对于外辐射带,n值表现为逐渐下降的趋势. 为了研究质子投掷角分布对磁地方时的依赖关系,分析了能量为250~800keV的质子在两个不同磁地方时范围的投掷角分布规律. 结果显示,在内辐射带,质子强度的投掷角分布相对稳定,随磁地方时的变化并不显著;而在外辐射带的高L值区域,质子强度的投掷角分布随磁地方时变化明显,与磁地方时之间有明显的依赖关系.   相似文献   

10.
Measurements of the South Atlantic Anomaly (SAA) made with the Radiation Environment Monitor (REM) aboard Mir from November 1994 to February 1996 are presented. During this period an increase of the SAA radiation by ≈25% is observed, which coincides with a lowering of the radio solar flux. Radio solar flux is one of the parameters controlling the earth's atmospheric distribution and with it the absorption of inner radiation belt protons forming the SAA. Due to the altitude gradient of the atmospheric density, the proton fluxes in the SAA are anisotropic (loss cone, east-west effect). The measured distribution can be accounted for by basic models.  相似文献   

11.
The data from the synchronous-orbit satellites of the Gorizont series are used to study the dependences of the ion flux variation amplitudes in the synchronous altitude region (the diurnal behaviour) on particle energies and on the form and rigidity of the particle energy spectrum. The proton fluxes were measured in the energy range E 60–120 keV, and the [N,0]2+ and [C,N,0]4+ ion fluxes in the energy range E 60–70 keV/e.

The ratio of the diurnal variation amplitudes of the studied ions is shown to correspond to the similarity of their energy spectra in the E/Q representation. The magnetically-quiet time gradient of the distribution function F(μ,J,L) in the synchronous-orbit region is shown to be (∂F/∂L)=0 for the H+ and [N,0]2+ ions and (∂F/∂L) > 0 for the [C,N,0]4+ ions (at the values of μ corresponding to the examined energy ranges). During magnetically-disturbed periods the inner boundary of the (∂F/∂L)=0 region shifts to lower L and (∂ F/∂L) = O in the synchronous altitude region must be also for the [C,N,O]4+ ions.  相似文献   


12.
Under NASA's Space Environment Effects (SEE) program, we are developing new models for the low-altitude (250–1000 km, L < 1.5) trapped radiation environment based on data from the TIROS/NOAA polar orbiting spacecraft. The unique features of this data base and model include the long time series (more than one complete solar cycle) obtained from the TIROS/NOAA data and the use of a coordinate system more applicable to the low-altitude environment. The data show a strong variation (as much as a factor of 10) over the solar cycle and a hysteresis effect between the rising and falling portions of the solar cycle. Both the solar cycle variation and the hysteresis are functions of L. In addition to the hysteresis effect, the flux during a given cycle appears to be a function of the previous cycle. Superimposed on the gradual variation over the solar cycle, transient effects, correlated with solar particle events (SPEs), can be clearly seen. Comparison with the AP8 models shows that the measured flux is a factor of 2–3 higher than the model. These data have important implications for the development and use of trapped radiation models, and will also contribute to our knowledge of the source and loss mechanisms at work in the inner zone.  相似文献   

13.
14.
In low earth orbit, the SAA region is the dominant contributor to both proton environment and electron environment from the standpoint of radiation dose for spacecraft lifetime. However, the polar region and the horn region are sometimes strongly disturbed due to large solar and geomagnetic events. During large disturbances, enhancements in proton flux are measured in the polar region, which gives temporary more severe space radiation environment than that given in the SAA region. On the other hand, enhancements in electron flux are measured mainly in the horn region corresponding to the outer radiation belt, which are likely sources of high-energy electrons in the inner radiation belt. These short-term disturbances have another radiation hazard to spacecraft such as single event and electrostatic discharge.  相似文献   

15.
New experimental data obtained on the orbital station ‘MIR’ in 1991 during solar maximum are discussed. Electron fluxes with Ee>75 keV were registered for three different directions as well as for electrons with Ee>300 and 600 keV. Spatial and time distributions of electron fluxes in the trapping region are presented. In the inner radiation belt an additional maximum is observed at L=1.25–1.35, and the fluxes in the 22-05h MLT interval are 2–3 orders of magnitude smaller, than during other local times. In this region a flattening of the electron spectrum is observed. The results obtained were compared with the AE-8 model.  相似文献   

16.
The paper reviews radiation exposures recorded during space flights of the US and USSR. Most of the data are from manned missions and include discussion of absorbed dose and dose rates as a function of parameters such as altitude, inclination, spacecraft type and shielding. Preliminary data exist on the neutron and HZE-particle component, as well as the LET spectra. For low Earth-orbit missions, the dose encountered is strongly altitude-dependent, with a weaker dependence upon inclination. The doses range from about 6 millirad per day for the Space Transportation System No. 3 flight to about 90 mrad per day for Skylab. The effective quality factor (QF) for the near-Earth orbits and free space has been estimated to be about 1.5 and about 5.5 respectively. Complete shielding from the galactic cosmic rays does not appear practical because of spacecraft weight limitations.  相似文献   

17.
The Space Radiation (SPACERAD) experiments on the Combined Release and Radiation Effects Satellite (CRRES) gathered 14 months of radiation particle data in an 18 degrees inclination orbit between 350 km and 36000 km from July 1990 to October 1991. When compared to the NASA radiation belt models AP8 and AE8, the data show the proton model (AP8) does not take into account a second belt formed after major solar flare/shock injection events, and the electron model (AE8) is misleading, at best, in calculating dose in near-Earth orbits. The second proton belt, although softer in energy than the main proton belt, can produce upsets in proton sensitive chips and would produce significant dose in satellites orbiting in it. The MeV electrons observed on CRRES show a significant particle population above 5 MeV (not in the AE8 model) which must be included in any meaningful dose predictions for satellites operating between L-shells of 1.7 and 3.0 RE.  相似文献   

18.
Temporal variations of the radiation belt particle during the magnetic storms are investigated using measurements by the low altitude satellite spectrometer. Along with several known effects, such as the outer radiation belt intensity decrease at the main phase, the radial diffusion with the particle acceleration and the recovery of the radiation belt during the recovery phase, some less known features were investigated, such as the dawn–dusk asymmetry of the radiation belt.  相似文献   

19.
The Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) aboard the Upper Atmosphere Research Satellite (UARS) has been measuring solar UV irradiances since October 1991, a period which includes the decline of solar cycle 22 followed by the rise of cycle 23. Daily solar measurements include scans over the wavelength range 115–410 nm at 1.1 nm resolution. As expected, the measured time series of UV irradiances exhibit strong periodicities in solar cycle and solar rotation. For all wavelengths, the UV irradiance time series are similar to that of the Mg II core-to-wing ratio. During solar cycle 22, the irradiance of the strong Ly- line varied by more than a factor of two. The peak-to-peak irradiance variation declined with increasing wavelength, reaching 10% just below the Al edge at 208 nm. Between the Al edge and 250 nm the variation was 6–7%. Above 250 nm, the variation declines further until none is observed above 290 nm. Preliminary results for the first portion of cycle 23 indicate that the far UV below the Al edge is rising at about the same rate as the Mg II index while the irradiances in the Ly- emission line and for wavelengths longer than the Al edge are rising more slowly — even after accounting for the lower level of activity of cycle 23.  相似文献   

20.
When the solar wind dynamic pressure is high, the Venus ionosphere usually contains a belt of steady magnetic field at the very lowest altitudes to which Pioneer Venus probes. The current layer that flows on the high altitude side of this low altitude belt is centered at an altitude which ranges from 170 to 190 km with a most probable altitude of 182 km. This altitude is independent of solar zenith angle and hence the current system is flowing horizontally rather than vertically as proposed by Cloutier and co-workers. The lower edge of the magnetic belt was probed only on the lowest altitude passes of Pioneer Venus. This boundary is even more stable in location. The belt has decayed to 90% of its maximum strength usually by 162 km and to 50% of its maximum strength by 155 km. We interpret these data to indicate that the observed magnetic structure of the Venus ionosphere is a product of temporal evolution rather than of spacecraft motion through a spatially varying static structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号