首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
For pt. I see ibid., vol. 34, pp. 1271-1292 (1998). This paper considers the use of “stochastically constrained” spatial and spatio-temporal adaptive processing in multimode nonstationary interference (“hot clutter”) mitigation for scenarios that do not allow access to a group of range cells that are free from the backscattered sea/terrain signal (“cold clutter”). Since supervised training methods for interference covariance matrix estimation using the cold-clutter-free ranges are inappropriate in this case, we introduce and analyze adaptive routines which can operate on range cells containing a mixture of hot and cold clutter and possible targets (unsupervised training samples). Theoretical and simulation results are complemented by surface-wave over-the-horizon data processing, recently collected during experimental trials in northern Australia  相似文献   

2.
Optimal and adaptive reduced-rank STAP   总被引:1,自引:0,他引:1  
This paper is concerned with issues and techniques associated with the development of both optimal and adaptive (data dependent) reduced-rank signal processing architectures. Adaptive algorithms for 1D beamforming, 2D space-time adaptive processing (STAP), and 3D STAP for joint hot and cold clutter mitigation are surveyed. The following concepts are then introduced for the first time (other than workshop and conference records) and evaluated in a signal-dependent versus signal independent context: (1) the adaptive processing “region-of-convergence” as a function of sample support and rank, (2) a new variant of the cross-spectral metric (CSM) that retains dominant mode estimation in the direct-form processor (DFP) structure, and (3) the robustness of the proposed methods to the subspace “leakage” problem arising in many real-world applications. A comprehensive performance comparison is conducted both analytically and via Monte Carlo simulation which clearly demonstrates the superior theoretical compression performance of signal-dependent rank-reduction, its broader region-of-convergence, and its inherent robustness to subspace leakage  相似文献   

3.
Adaptive array algorithms based on sample matrix inversion (SMI) require the availability of a secondary data set to “train” the adaptive filter. Numerous data-independent rules have been proposed for selecting this training data. However, such rules often perform poorly in inhomogeneous environments. We present data-adaptive methodologies for selecting the training data. The techniques, called “Power Selected Training” and “Power Selected Deemphasis”, use measurements of the interference environment to select training data. This work describes these algorithms and their performance on recorded radar data  相似文献   

4.
Efficient robust AMF using the FRACTA algorithm   总被引:1,自引:0,他引:1  
The FRACTA algorithm has been shown to be an effective space-time adaptive processing (STAP) methodology for the airborne radar configuration in which there exists nonhomogeneous clutter, jamming, and dense target clusters. Further developments of the FRACTA algorithm are presented here in which the focus is on the robust, efficient implementation of the FRACTA algorithm. Enhancements to the FRACTA algorithm include a censoring stopping mechanism, an alternative data blocking approach for adaptive power residue (APR) censoring, and a fast reiterative censoring (RC) procedure. Furthermore, a coherent processing interval (CPI) segmentation scheme for computing the adaptive weights is presented as an alternative approach to computing the adaptive matched filter (AMF) weight vector that allows for lower sample support and reduced computational complexity. The enhanced FRACTA algorithm, denoted as FRACTA.E, is applied to the KASSPER I challenge datacube which possesses dense ground target clusters that are known to have a significant deleterious effect on standard adaptive matched filtering (AMF) processors. It is shown that the FRACTA.E algorithm outperforms and is considerably more computationally efficient than both the original FRACTA algorithm and the standard sliding window processing (SWP) approach. Furthermore, using the KASSPER I datacube, the FRACTA.E algorithm is shown to have the same detection performance as the clairvoyant algorithm where the exact range-dependent clutter covariance matrices are known.  相似文献   

5.
Circular array STAP   总被引:5,自引:0,他引:5  
Traditionally, space-time adaptive processing (STAP) for airborne early warning (AEW) radar has been applied to uniform linear arrays (ULAs). However, when considering the overall radar system, electronically scanned circular arrays have advantages: a better combination of even and continual angular and temporal coverage, and mechanical simplicity because it does not need to rotate. This paper answers the question “How well does STAP perform when applied to a circular array?” This paper shows that for the AEW mission, circular arrays are indeed STAP compatible. However, when conventional STAP algorithms are used there may be a small loss in performance when compared with a ULA. With some care in the choice and implementation of the STAP algorithm, the majority of the degradation is at close ranges, where the target returns are relatively strong. At long ranges performance is barely affected. A STAP algorithm which compensates for the circular array environment and provides better performance than existing algorithms is presented  相似文献   

6.
Multistage partially adaptive STAP CFAR detection algorithm   总被引:1,自引:0,他引:1  
A new method of partially adaptive constant false-alarm rate (CFAR) detection is introduced. The processor implements a novel sequence of orthogonal subspace projections to decompose the Wiener solution in terms of the cross-correlation observed at each stage. The performance is evaluated using the general framework of space-time adaptive processing (STAP) for the cases of both known and unknown covariance. It is demonstrated that this new approach to partially adaptive STAP outperforms the more complex eigen-analysis approaches using both simulated DARPA Mountain Top data and true pulse-Doppler radar data collected by the MCARM radar  相似文献   

7.
Stap using knowledge-aided covariance estimation and the fracta algorithm   总被引:1,自引:0,他引:1  
In the airborne space-time adaptive processing (STAP) setting, a priori information via knowledge-aided covariance estimation (KACE) is employed in order to reduce the required sample support for application to heterogeneous clutter scenarios. The enhanced FRACTA (FRACTA.E) algorithm with KACE as well as Doppler-sensitive adaptive coherence estimation (DS-ACE) is applied to the KASSPER I & II data sets where it is shown via simulation that near-clairvoyant detection performance is maintained with as little as 1/3 of the normally required number of training data samples. The KASSPER I & II data sets are simulated high-fidelity heterogeneous clutter scenarios which possess several groups of dense targets. KACE provides a priori information about the clutter covariance matrix by exploiting approximately known operating parameters about the radar platform such as pulse repetition frequency (PRF), crab angle, and platform velocity. In addition, the DS-ACE detector is presented which provides greater robustness for low sample support by mitigating false alarms from undernulled clutter near the clutter ridge while maintaining sufficient sensitivity away from the clutter ridge to enable effective target detection performance  相似文献   

8.
In this paper the acquisition of a low observable (LO) incoming tactical ballistic missile using the measurements from a surface based electronically scanned array (ESA) radar is presented. We present a batch maximum likelihood (ML) estimator to acquire the missile while it is exo-atmospheric. The proposed estimator, which combines ML estimation with the probabilistic data association (PDA) approach resulting in the ML-PDA algorithm to handle false alarms, also uses target features. The use of features facilitates target acquisition under low signal-to-noise ratio (SNR) conditions. Typically, ESA radars operate at 13-20 dB, whereas the new estimator is shown to be effective even at 4 dB SNR (in a resolution cell, at the end of the signal processing chain) for a Swerling III fluctuating target, which represents a significant counter-stealth capability. That is, this algorithm acts as an effective “power multiplier” for the radar by about an order of magnitude. An approximate Cramer-Rao lower bound (CRLB), quantifying the attainable estimation accuracies and shown to be met by the proposed estimator, is derived as well  相似文献   

9.
The objective of this primarily tutorial item is to describe a general model for the observable data and the appropriate data processing involved in sensing rigid target fields with coherent radars. Any number of radars may be involved, and the scene and each radar may be in any kind of motion-with no restrictions on motion through resolution cells during the coherent processing time of the radars. The motions are assumed to be known. To some extent motion parameters can be estimated from the radar data, e.g., by adaptive parameter adjustments in the data processing; however, this subject is beyond the scope of this discussion. In large measure, the analysis in this item highlights the central conceptual result obtained by J.L. Walker as described in [1] -a major work in radar theory.  相似文献   

10.
Space-time adaptive processing (STAP) holds tremendous potential for the new generation airborne surveillance radar, in which the phased array antennas and pulse Doppler processing mode are adopted. A new STAP approach using the multiple-beam and multiple Doppler channels is presented here for airborne phased array radar. The approach with space-time multiple-beam (STMB) architecture is robust to array errors and has very low system degrees of freedom (DOFs). Hence, it has low sample support requirement and it is very suitable for the practical planar phased array radar under nonhomogeneous clutter environments. Meanwhile, a new nonhomogeneous detector (NHD) based on the correlation dimension (CD) is also proposed here, which is used as an effective method to screen tracing data prior to detection processing. It can further improve the performance of the STAP approach in the severely nonhomogeneous clutter environments. Therefore, a scheme that incorporates the correlation dimension nonhomogeneity detector (CD-NHD) with the STMB is recommended, which we term CD-NHD-STMB. The experimental simulation results indicate that: 1) the STMB processor is robust to array element error and has high performance under nonhomogeneous clutter environments; 2) the CD-NHD is also effective on the nonhomogeneous clutter. As a result, the CD-NHD-STMB scheme is robust to array element error and nonhomogeneous clutter, and therefore available for airborne phased array radar applications.  相似文献   

11.
In this paper we discuss the combined use of a priori information and adaptive signal processing techniques for the design and the analysis of a knowledge-aided (KA) radar receiver for Doppler processing. To this end, resorting to the generalized likelihood function (GLF) criterion (both one-step and two-step), we design and assess data-adaptive procedures for the selection of training data. Then we introduce a KA radar detector composed of three elements: a geographic-map-based data selector, which exploits some a priori information concerning the topography of the observed scene, a data-adaptive training selector which removes dynamic outliers from the training data, and an adaptive radar detector which performs the final decision about the target presence. The performance of the KA algorithm is analyzed both on simulated as well as on real radar data collected by the McMaster University IPIX radar. The results show that the new KA system achieves a satisfactory performance level and can outperform some previously proposed adaptive detection schemes  相似文献   

12.
The effects of target Doppler are addressed in relation to adaptive receive processing for radar pulse compression. To correct for Doppler-induced filter mismatch over a single pulse, the Doppler-compensated adaptive pulse compression (DC-APC) algorithm is presented whereby the respective Doppler shifts for large target returns are jointly estimated with the illuminated range profile and subsequently incorporated into the original APC adaptive receive filter formulation. As a result, the Doppler-mismatch-induced range sidelobes can be suppressed thereby regaining a significant portion of the sensitivity improvement that is possible when applying adaptive pulse compression (APC) without the existence of significant Doppler mismatch. In contrast, instead of compensating for Doppler mismatch, the single pulse imaging (SPI) algorithm generalizes the APC formulation for a bank of Doppler-shifted matched filters thereby producing a sidelobe-suppressed range-Doppler image from the return signal of a single radar pulse which is applicable for targets with substantial variation in Doppler. Both techniques are based on the recently proposed APC algorithm and its generalization, the multistatic adaptive pulse compression (MAPC) algorithm, which have been shown to be effective for the suppression of pulse compression range sidelobes thus dramatically increasing the sensitivity of pulse compression radar.  相似文献   

13.
Space-time adaptive processing (STAP) is an effective method adopted in airborne radar to suppress ground clutter. Multiple-input multiple-output (MIMO) radar is a new radar concept and has superiority over conventional radars. Recent proposals have been applying STAP in MIMO configuration to the improvement of the performance of conventional radars. As waveforms transmitted by MIMO radar can be correlated or uncorrelated with each other, this article develops a unified signal model incorporating waveforms for STAP in MIMO radar with waveform diversity. Through this framework, STAP performances are expressed as functions of the waveform covariance matrix (WCM). Then, effects of waveforms can be investigated. The sensitivity, i.e., the maximum range detectable, is shown to be proportional to the maximum eigenvalue of WCM. Both theoretical studies and numerical simulation examples illustrate the waveform effects on the sensitivity of MIMO STAP radar, based on which we can make better trade-off between waveforms to achieve optimal system performance.  相似文献   

14.
15.
Time diversity transmission is often used to circumvent the high probability of a deep fade on a single transmission which may result in loss of the signal. One way to combat deep fades is to postdetection integrate the received observations from each range resolution cell. The false alarm rate of the postdetection integrator (PI) is extremely sensitive to randomly arriving impulse interference. Such interfering pulses may be unintentionally generated by nearby radars or intentionally generated by pulse jammers seeking to destroy the visibility of the radar. The binary integrator (PI) which uses an M-out-of-L decision rule is insensitive to at most M-1 interfering pulses. We consider the adaptive implementation of the PI and BI detectors for constant false alarm rate (CFAR) operation. We show that the CFAR BI detector when the “AND” (L-out-of-L) decision rule is used exhibits more robust false alarm control properties in the presence of impulse interference at the expense of severe detection loss when no interference is present. The CFAR adaptive PI (API) detector is proposed to alleviate this problem. The CFAR API detector implements an adaptive censoring algorithm which determines and censors with high probability the interference samples thereby achieving robust false alarm control in the presence of interference and optimum detection performance in the absence of interference  相似文献   

16.
Space-time adaptive processing (STAP) and related adaptive array techniques hold tremendous potential for improving sensor performance by exploiting signal diversity. Such methods have important application in radar, sonar, and communication systems. Recent advances in digital signal processing technology now provide the computational means to field STAP-based systems. The objective of this special collection of papers is to examine the current state-of-the art in STAP technology and explore the remaining obstacles, practical issues and novel techniques required to implement STAP-based radar, sonar or communication systems  相似文献   

17.
曹杨  冯大政  水鹏朗  向聪 《航空学报》2013,34(7):1654-1662
针对机载多输入多输出(MIMO)雷达杂波分布呈现空时耦合特性,提出一种空时自适应杂波对消器.利用机载MIMO雷达的脉冲回波数据,构造杂波对消器的系数矩阵.通过空时自适应杂波对消器的预处理,可以有效地抑制杂波,并通过与常规空时处理算法的级联,最终可以有效提高动目标的检测性能.实现了由传统地基雷达杂波对消器向机载运动平台的推广.仿真结果表明,这种自适应杂波对消器不仅适用于正侧视雷达,对于非正侧视雷达也同样适用.  相似文献   

18.
基于3DT的空时自适应单脉冲参数估计算法   总被引:1,自引:0,他引:1  
于佳  沈明威  吴迪  朱岱寅 《航空学报》2016,37(5):1580-1586
空时自适应处理(STAP)是机载预警雷达抑制杂波和干扰的一项关键技术,而多普勒三通道联合自适应处理(3DT)是适合工程实现的降维(RD)STAP方法。STAP目标检测后还需进一步估计目标的角度参数,因此将自适应单脉冲(AM)技术引入3DT,提出了一种高精度联合估计目标速度与方位空间角的空时自适应单脉冲算法。理论分析与仿真实验结果表明,当目标多普勒频率偏离检测多普勒单元中心频率时,该算法能同时减少目标多普勒跨越损失和空时导引矢量失配损失,进而提高输出信杂噪比(SCNR),改善目标测角精度。  相似文献   

19.
The suitability of ultra-wideband ground-penetrating radar as a tool for the detection of buried metallic mines is explored in this paper. The analysis centers around a 200-800 MHz, dual-polarized ground penetrating radar (GPR) designed and built by SRI International. The analysis consisted of fusing the images from the dual polarizations into a single image to enhance the target objects and suppress clutter. Results are shown for several variations of a Mahalanobis-based fusion technique, and “soft decision” minefield detection results based upon Monte Carlo statistical techniques are also presented. Although relatively few scenes were analyzed, these results show that the dual-polarized GPR is potentially very effective at finding buried mines and minefields  相似文献   

20.
The performance of an optimum radar signal processor and more conventional techniques (such as MTI, adaptive MTI, and cqherent integration) are compared. A mathematical method is suggested and applied to several cases of practical interest. A number of operative conditions are discovered in which the conventional processing techniques give very poor performance and the optimum radar processor becomes necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号