首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The solar particle events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and linear energy transfer (LET) spectra in shielding discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup.  相似文献   

2.
In analyzing charged particle spectra in space due to galactic cosmic rays (GCR) and solar particle events (SPE), the conversion of particle energy spectra into linear energy transfer (LET) distributions is a convenient guide in assessing biologically significant components of these spectra. The mapping of LET to energy is triple valued and can be defined only on open energy subintervals where the derivative of LET with respect to energy is not zero. Presented here is a well-defined numerical procedure which allows for the generation of LET spectra on the open energy subintervals where, in spite of their singular nature, the spectra are integrable. The efficiency of the numerical procedures is demonstrated by providing examples of computed differential and integral LET spectra and their equilibrium components for historically large SPEs and 1977 solar minimum GCR environments. Due to the biological significance of tissue, all simulations are done with tissue as the target material.  相似文献   

3.
Liulin-5 is a particle telescope developed for the investigation of the radiation environment within the Russian spherical tissue-equivalent phantom on the International Space Station (ISS). Liulin-5 experiment is conducted aboard the Russian segment of ISS since 28 June 2007 as an adherent part of the international project MATROSHKA-R. The main objective of Liulin-5 experiment is to study the depth-dose distribution of the different components of the orbital radiation field in a human phantom. Additional objectives are mapping of the radiation environment in the phantom and its variations with time and orbital parameters (such as solar cycle, solar flare events, inclination and altitude). Liulin-5 is an active instrument, capable to provide real-time radiation data for the particle flux and dose rates, energy deposition and LET spectra. Data are recorded automatically on memory cards, periodically transported to ground by returning vehicles. In this report we present some first results from data analysis including energy deposition spectra, absorbed dose, dose rate and flux distribution measured simultaneously at 3 different depths of phantom’s radial channel and linear energy transfer (LET) spectrum. Data discussed are for the period July 2007–April 2008.  相似文献   

4.
High energy, high-Z (HZE) particles are present in high-altitude and high-inclination satellite orbits. Most of the HZE dose above LET = 200 keV/micrometer is due to Fe nuclei. Individual HZE particles can damage several cells adjacent to one another along the particle track in tissue. The outcome has been described as a "microlesion" by D. Grahn. The present study attempts to define conditions for microlesions in specific tissues, to seek biological evidence that microlesions are produced, and to evaluate the microlesion as a potentially useful unit of dose in assessing hazards to spaceworkers. Microlesions in individuals cells and hair follicles have been described. Microbial studies have provided some evidence for independent secondary electron action. Whether or not a few hundred microlesions would be damaging to the whole organism depends upon the nature of damage to critical tissues. For example, cancer may occur if microlesions kill several cells in a straight line and mutate other cells alongside the particle track. Fe particle irradiation of the mouse Harderian gland (Fry et al., this issue) produces tumors efficiently. Microlesions in the lens, cornea, and retina need to be considered. Further dialogue is required before a final decision can be made concerning the most appropriate way to assess the HZE hazard.  相似文献   

5.
Low orbit, geostationary, and deep-space flights differ from one another with respect to particle radiation environment, participating population size, mission duration, and biological risks other than radiation. It is proposed that all of these factors be considered in the setting of safety standards and, in particular, that the rem-dose concept is applicable only to radiations having low and intermediate linear energy transfer (electrons, protons, and helium ions), whereas the incidence of microlesions is a more meaningful indicator of the hazard due to higher-Z, high energy (HZE) particles. A microlesion is the biological injury inflicted in a specific tissue by a single HZE particle, and it is still in need of quantitative biological definition for specific mammalian tissues. If for example, a microlesion is taken as due to a HZE particle track 10 cell diameters long with LET > 200 KeV/micrometer in its core and > 25 rad dose in its penumbra at a distance of 10 micrometers, then the microlesion dose rate in geostationary orbit, for example, is about 9,000 microlesions per cm3 of tissue per month.  相似文献   

6.
Nuclear track detectors were used to measure the integral Linear Energy Transfer (LET) spectra above 1 GeV per cm water behind the complex material shielding inside a spacecraft. The measurements are compared with predictions of the contribution of high charge, high energy HZE particles of the galactic cosmic radiation taking into account the influence of solar and geomagnetic modulation and shielding by matter.  相似文献   

7.
The risk of radiation-induced cancer to space travelers outside the earth's magnetosphere will be of concern on missions to the Moon and beyond to Mars. High energy galactic cosmic rays with high charge (HZE particles) will penetrate the spacecraft and the bodies of the astronauts, sometimes fragmenting into nuclear secondary species of lower charge but always ionizing densely, thus causing cellular damage which may lead to malignant transformation. To quantitate this risk, the concept of dose equivalent (in which a quality factor Q as a function of LET is assumed) may not be adequate, since different particles of the same LET may have different efficiencies for tumor induction. Also, RBE values on which quality factors are based depend on response to low-LET radiation at low doses, a very difficult region for which to obtain reliable experimental data. Thus, we introduce a new concept, a fluence-related risk coefficient (F), which is the risk of a cancer per unit particle fluence and which we call the risk cross section. The total risk is the sum of the risk from each particle type: sigma i integral Fi(Li) phi i(Li) dLi, where Li is the LET and phi i(Li) is the fluence-LET spectrum of the ith particle type. As an example, tumor prevalence data in mice are used to estimate the probability of mouse Harderian gland tumor induction per year on an extra-magnetospheric mission inside an idealized shielding configuration of a spherical aluminum shell 1 g/cm2 thick. The combined shielding code BRYNTRN/GCR is used to generate the LET spectra at the center of the sphere. Results indicate a yearly prevalence at solar minimum conditions of 0.06, with 60% of this arising from charge components with Z between 10 and 28, and two-thirds of the contribution arising from LET components between 10 and 200 keV/micrometers.  相似文献   

8.
Measurements of radiation exposures aboard manned space flights of various altitudes, orbital inclinations and durations were performed by means of passive radiation detectors, thermoluminescent detectors (TLD's), and in some cases by active electronic counters. The TLD's and electronic counters covered the lower portion of the LET (linear energy transfer) spectra, while the nuclear track detectors measured high-LET produced by HZE particles. In Spacelab (SL-1), TLD's recorded a range of 102 to 190-millirad, yielding an average low-LET dose rate of 11.2 mrad per day inside the module, about twice the dose rate measured on previous space shuttle flights. Because of a higher inclination of the SL-1 orbit (57 degrees versus 28.5 degrees for previous shuttle flights), substantial fluxes of highly ionizing HZE particles were also observed, yielding an overall average mission dose-equivalent of about 135 millirem, about three times higher than measured an previous shuttle missions. A dose rate more than an order of magnitude higher than for any other space shuttle light was obtained for mission STS-41C, reflecting the highest orbital altitude to date of 519 km.  相似文献   

9.
10.
Effect of HZE particles and space hadrons on bacteriophages.   总被引:2,自引:0,他引:2  
The effect of high energy (HZE) particles and high energy hadrons on T4Br+ bacteriophage was analyzed. The experiments were done in orbital flight, on high mountains, on an accelerator, and with an alpha particle source. We studied the survival rate of the bacteriophage, the mutation frequency, the mutation spectrum and the revertability under the action of chemical mutagens with a known mechanism of action on DNA. It was found that the biological efficiency of HZE particles and high energy hadrons is greater than that of gamma radiation. The spectra of mutations produced by these mutations and the mechanisms of their action are also different. These effects were local, because of the mode of interaction of the radiant energy with biological objects, and depended on the linear energy transfer (LET). The modes have now been experimentally defined.  相似文献   

11.
The fragmenting of high energy, heavy ions (HZE particles) by hydrogen targets is an important, physical process in several areas of space radiation research. In this work quantum mechanical optical model methods for estimating cross sections for HZE particle fragmentation by hydrogen targets are presented. The cross sections are calculated using a modified abrasion-ablation collision formalism adapted from a nucleus-nucleus collision model. Elemental and isotopic production cross sections are estimated and compared with report measurements for the breakup of neon, sulphur, and iron, nuclei at incident energies between 400 and 910 MeV/nucleon. Good agreement between theory and experiment is obtained.  相似文献   

12.
On exploratory class missions astronauts will be exposed to a variety of heavy particles (HZE particles) which differ in terms of particle energy and particle linear energy transfer. The present experiments were designed to evaluate how these physical characteristics of different particles affect cognitive performance, specifically operant responding. Following exposure to 28Si, 48Ti, 12C and 16O particles at the NASA Space Radiation Laboratory rats were tested for their ability to respond appropriately to changes in reinforcement schedules using an operant task. The results showed that the effectiveness of different particles in disrupting cognitive performance, defined as the lowest dose that produced a performance decrement, varied as a function of the energy of the specific particle: for comparisons between different energies of the same particle (e.g., 56Fe) the effectiveness of the particle was directly proportional to particle linear energy transfer, whereas for comparisons between different particles (e.g., 56Fe and 16O) effectiveness was inversely proportional to particle linear energy transfer. The results are discussed in terms of the mechanisms that influence the effectiveness of different particles and energies and in terms of their implications for analyzing the possible risks to astronauts of decrements in cognitive performance following exposure to HZE particles on long-duration exploratory class missions.  相似文献   

13.
Early and late effects of accelerated heavy ions (HZE) on the embryonic tissue of Arabidopsis thaliana seeds were investigated seeing that initial cells of the plant eumeristems resemble the original cells of animal and human tissues with continuous cell proliferation. The endpoints measured were lethality and tumorization in the M1-generation for early effects and embryonic lethality in the M2-generation for late effects. The biological endpoints are plotted as functions of the physical parameters of the irradiation i.e. ion fluence (p/cm2), dose (Gray), charge Z and linear energy transfer (LET). The results presented contribute to the estimation of the principles of biological HZE effects and thus may help to develop a unified theory which could explain the whole sequence from physical and chemical reactions to biological responses connected with heavy ion radiation. Additionally, the data of this paper may be used for the discussion of the quality factor for heavy ion irradiation needed for space missions and for HZE-application in radio-therapy by use of accelerators (UNILAC, (SIS/ESR), BEVALAC).  相似文献   

14.
Flux and dose rate dynamics of solar cosmic rays were measured by the Lyulin dosimeter during the events 19 October 1989 and 23 March 1991. The maximum dose rate registered was 0.4, 0.12 and 0.01 cGy/hour, respectively. Based on the latitude distribution of particle flux a power law form for the energy spectra of solar protons in the anisotropic phase of the events on 19 October 1989 and 23 March 1991 was determined. It was obtained that after the development of geomagnetic storm protons with energies more than 1 GeV were registered.  相似文献   

15.
For long duration missions beyond the magnetosphere, the hazards posed by solar particle events (SPE) require the development of new strategies to minimize both the radiation dose and the effects. Potential strategies include the development of improved short-term forecasting of SPE through better observations and research, consideration of HZE particles in real-time forecasting and monitoring, improved knowledge of the biological effects of the particles involved in SPE, and the development of methods for combining SPE forecasts with temporary shielding and chemical countermeasures. Evaluation of present capabilities and the identification of areas of further research to achieve the necessary capabilities are discussed.  相似文献   

16.
A new Atmospheric Ionizing Radiation (AIR) model is currently being developed for use in radiation dose evaluation in epidemiological studies targeted to atmospheric flight personnel such as civilian airlines crewmembers. The model will allow computing values for biologically relevant parameters, e.g. dose equivalent and effective dose, for individual flights from 1945. Each flight is described by its actual three dimensional flight profile, i.e. geographic coordinates and altitudes varying with time. Solar modulated primary particles are filtered with a new analytical fully angular dependent geomagnetic cut off rigidity model, as a function of latitude, longitude, arrival direction, altitude and time. The particle transport results have been obtained with a technique based on the three-dimensional Monte Carlo transport code FLUKA, with a special procedure to deal with HZE particles. Particle fluxes are transformed into dose-related quantities and then integrated all along the flight path to obtain the overall flight dose. Preliminary validations of the particle transport technique using data from the AIR Project ER-2 flight campaign of measurements are encouraging. Future efforts will deal with modeling of the effects of the aircraft structure as well as inclusion of solar particle events.  相似文献   

17.
Ion beam transport theory allows testing of material transmission properties in the laboratory environment generated by particle accelerators. This is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are the main emphasis of the present work. In consequence, an analytic solution of the linear Boltzmann equation is pursued in the form of a Green's function allowing flexibility in application to a broad range of boundary value problems. It has been established that simple solutions can be found for high charge and energy (HZE) ions by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift with dispersion associated with nuclear events. Recently, we have found global solutions including these effects providing a broader class of HZE ion solutions.  相似文献   

18.
Based on the concept of multiple acceleration of solar energetic particles (SEP) we analyzed the super-event of 20 January 2005 by the data of ground level, balloon and spacecraft observations. The main characteristics of relativistic solar protons (energy spectra, anisotropy directions and pitch-angle distributions) are derived and their dynamics during the event is studied. It is shown that the flux of relativistic solar protons may consist of two distinct components, the so-called prompt and delayed ones. Within a two-source model of particle generation, one of which is associated with an expanding magnetic loop, we solved the transport equation in energy phase space, including adiabatic losses simultaneously with the stochastic acceleration process, and calculate the expected spectra of the delayed component at the source. The confrontation of experimental spectra with theoretical ones shows that the delayed component may be correctly described by stochastic acceleration, but not the prompt component. The required acceleration efficiencies turned out to be rather high, so that, for this particular event, adiabatic cooling is practically negligible. Our results provide a new support to the existence of two populations of relativistic solar protons in some SEP events.  相似文献   

19.
Although galactic iron nuclei constitute only a small percentage of the total flux of radiation in space, they are extremely significant from a biological standpoint, and represent a concern for long-term manned space missions of the future. Dosages resulting from iron nuclei, and the high-charge secondary nuclei subsequently produced in nuclear fragmentation reactions, have been calculated at the centre of a simple model of the human brain, shielded by various thicknesses of aluminium. Three mission scenarios are considered representing different geomagnetic shielding conditions at solar minimum. Without artificial shielding absorbed dose rates outside the magnetosphere, in polar orbit and in the proposed Space Station orbit, are approximately 0.3, 0.1 and 0.03 cGy/year respectively, corresponding to dose equivalent rates of 8.0, 2.5 and 0.8 cSv/year, and decreasing by roughly a factor of two behind 10 g/cm2 of aluminium. In line with new approaches to risk estimation based on particle fluence and track structure, calculations of the number of cell nuclei likely to be struck by these HZE particles are also presented. Behind 10 g/cm2 of aluminium, 3.4%, 1.3% and 0.5% of cell nuclei at the centre of the brain will be traversed at least once by such a particle within three years, for the three mission scenarios respectively.  相似文献   

20.
The University of Kiel Cosmic Ray Instrument on board the solar probes HELIOS-1 and -2 measured angular distributions of electrons, protons, and heavier nuclei between 0.3 and 1 AU over one complete solar cycle between 1974 and 1986. Anisotropies are observed mainly during the rising phase of solar particle events or close to the passage of certain interplanetary shocks. The anisotropies are presented as proton data of energies between 27 and 37 MeV. The dependence of the anisotropies on particle energy and distance from the sun is provided based on diffusive propagation in interplanetary space. Strong anisotropies could provide a chance of efficient shielding of the passenger compartment by moving heavier parts of the spacecraft structure into the direction of the highest flux. A reduction of the total radiation dose by less than a factor of 2 might be achievable, however, selection of quiet times for the mission reduces the radiation hazard much more.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号