首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在存放场地,固体发动机会由于各种瞬时热应力而产生累积性损伤。引起这些瞬时热应力的是环境温度、风、太阳辐照等与地理位置有关的所有一切因素的作用。业已表明,与最大损伤发生在大应力值的假设相反,推进剂的粘弹特性使其在低应力值下出现显著的损伤。因此,防护性贮存对发动机的使用寿命并不总是有利的。  相似文献   

2.
为评估持久应变载荷下固体推进剂装药在贮存过程中的结构完整性,采用定应变断裂和热力耦合加速老化相结合的试验方法,获得了宽应变区域内固体推进剂松弛破坏时间模型,联合装药在长期贮存/低温应力加速状态下危险部位的最大持久应变,计算出装药的低温应力加速系数和等效加速试验时间,确定了其在长期贮存和低温应力加速状态的等效关系,在此基础上建立了固体推进剂装药低温应力等效加速试验方法。采用此方法,开展了NEPE推进剂■200 mm圆管发动机装药的低温应力等效加速试验,试验温度为-48℃,试验时间分别为365 d和517 d,试验后装药均保持结构完整。结果表明,仅考虑机械应力情况下装药贮存12 a和17 a后结构完整,已应用于某型号固体推进剂发动机装药寿命评估、定寿和延寿。  相似文献   

3.
为了进行老化评价研究,选择和研制了三种不同固体含量的(88~91%)端羟基聚丁二烯(HTPB)推进剂。已经证实,88%固体含量的HTPB推进剂符合以前提出的老化模型。这种老化模型已成功地进一步用于较高固体含量的推进剂以及其它计划用的HTPB推进剂的实测力学性能老化数据。采用这种老化模型,根据加速热老化试验数据予测了长期力学性能,予测数据与六年实测老化数据相当一致。利用予测的推进剂破坏性能,结合火箭发动机的要求,来确定予先选定安全裕度的发动机药柱的使用寿命。本文列出了各种复合推进剂老化速率的比较数据。根据老化结果的分析,提出了一个宽范围老化行为的数学表达式。  相似文献   

4.
本文提出了固体推进剂火箭发动机在室外贮存条件下的热应力和热应变计算的一般方法。按照气象资料,研究和提出了平均环境热载荷变化的模型——考虑了环境温度、天空辐照、风对流和太阳辐照等因素——并用以计算结构件的表面温度。数值算例应用于在亚利桑纳州菲尼克斯城地区存放的发动机粘弹性应力分析。  相似文献   

5.
针对机载战术导弹发动机的长寿命使用要求,开展了固体推进剂高温加速老化试验和发动机自然贮存解剖试验,并分别测试了固体推进剂在不同环境温度下的力学性能,对比了高温加速老化和发动机自然贮存老化之间的差异.结果表明,该固体推进剂在高温加速老化和长期自然贮存后,最大延伸率均明显下降,发动机自然贮存13 a后,推进剂的延伸率略优于...  相似文献   

6.
基于环境压强下NEPE固体推进剂双剪强度准则   总被引:3,自引:0,他引:3  
基于双剪强度理论和已有的NEPE固体推进剂强度试验资料,提出了一个NEPE固体推进剂双剪强度准则的推广形式,探讨了该双剪强度准则相关参数的选取问题,验证了该双剪强度准则的合理性。研究表明,多轴应力状态下NEPE固体推进剂强度与应力相关,八面体剪应力随平均主应力的增加呈非线性增加;NEPE推进剂的破坏强度随拉伸速率的增加而提高。  相似文献   

7.
HTPB复合固体推进剂老化损伤的CT研究   总被引:1,自引:0,他引:1  
针对HTPB复合固体推进剂老化存在的材料性能劣化问题,采用了计算机层析识别技术研究HTPB复合固体推进剂材料老化损伤.通过HTPB复合固体推进剂损伤的数学模型,定量描述了材料的老化问题,并将其代入推进剂粘弹本构方程.结果表明.老化损伤的粘弹本构方程能够一定程度上描述损伤老化引起的材料劣化问题。  相似文献   

8.
要正确预测出固体火箭发动机的贮存寿命,必须要研究材料在实际承载条件下的老化性能.本文通过承载热老化实验,研究了承载对一种典型复合固体推进剂老化性能的影响.所用方法亦可用于实际固体发动机贮存寿命的预估研究,所得结果可供有关人员参考.  相似文献   

9.
从单室双推力固体火箭发动机的应用、性能、推进剂、壳体材料、成型工艺、推力矢量控制等方面着手,讨论这种发动机的技术现状、应用情况和发展趋势,并同单室单推力发动机作了详细的对比.给出了国内外若干种主要单室双推力发动机的性能数据.今后发展动向:多数单室双推力发动机仍将以采用端羟基聚丁二烯推进剂为主;少烟无铝复合推进剂和微烟的硝胺类改性双基推进剂的应用将会有所增多;发动机壳体仍以采用超高强度钢为主;加快使用推力矢量控制装置.  相似文献   

10.
从动力学理论分析入手,结合推进剂老化特征参数的研究结果,研究了用非破坏性手段预估固体推进剂残留寿命的方法。动力学理论分析表明,反应活化能是老化温度的函数,活化能对老化温度存在线性依赖关系,且活化能对老化温度的依赖关系和指前因子对老化温度的依赖关系是等效的。研究结果表明,影响推进剂寿命的应力问题也可以转化为动力学问题来处理,且应力对推进剂寿命的影响显著。利用新推导的4参数动力学公式,结合适宜的特征参数,建立了预估推进剂残留寿命的非破坏性方法,该方法可用于到期导弹的延寿。  相似文献   

11.
用概率计算方法计算了经受各种环境温度的固体推进剂火箭发动机的贮存寿命。在力学性能方面测定了粘弹效应、化学老化作用、累积损伤及统计变量。符号说明  相似文献   

12.
固体发动机的贮存试验研究近年来受到广泛关注。本文阐述了固体发动机贮存试验的方法,并对贮存性能分析中的技术难点进行了讨论,内容包括推进剂老化的规律性与发动机装药老化的相关性,加速贮存与自然长期贮存的相关性,小尺寸试验发动机与全尺寸发动机性能的相关性,环境湿度对推进剂性能的影响,定应变对装药贮存性能的影响。  相似文献   

13.
《固体火箭技术》2007,30(5):F0003-F0003
中国航天科技集团公司四院四十二所固体推进剂安全与贮存评估中心,为专业从事固体推进剂、火箭发动机、导弹武器及危险化学品安全与贮存性能研究、测试及评估、评价的研究机构。研究领域主要包括固体推进剂危险等级分类、工艺安全性评估、爆炸破坏效应评价、加速老化、寿命预估及延寿等。先后完成了多项总装备部、航天科技集团公司及四院重点研究项目。  相似文献   

14.
<正>固体推进剂用功能材料是固体发动机的动力基础,主要包括氧化剂、燃料、粘合剂和一系列功能助剂,如增塑剂、键合剂、固化剂、固化催化剂、燃速催化剂、降速剂、压强指数调节剂、交联剂、安定剂、防老剂、工艺助剂等。这些功能材料对固体推进剂的整体性能起着极其关键的作用,如果把用量较多的氧化剂、燃料和粘合剂称为决定固体推进剂能量高低的“主材”,那么功能助剂就是对固体推进剂工艺性能、力学性能、燃烧性能、老化性能等具有“四两拨千斤”作用的“小材”。  相似文献   

15.
考虑泊松比的固体发动机装药贮存寿命预估   总被引:2,自引:0,他引:2  
以含单个小孔隙的立方体为代表性体积单元,结合弹性力学公式,推导了固体推进剂空穴率与瞬时泊松比的关系,得到泊松比随推进剂老化的变化规律.通过固体推进剂加速老化试验,得到固体推进剂瞬时模量及最大延伸率随贮存时间的变化规律.以固体推进剂瞬时模量和瞬时泊松比为老化参数,结合三维粘弹性有限元计算方法,计算了某发动机装药结构不同贮...  相似文献   

16.
固体推进剂宽温-气体围压试验系统设计与试验   总被引:1,自引:0,他引:1  
针对固体推进剂常压条件下力学性能满足要求,而发动机药柱结构完整性破坏频发的难题,研制了固体推进剂宽温-气体围压试验系统,对某HTPB推进剂进行了不同环境压力、温度和拉伸速率下的定速拉伸试验,获得了环境压力、温度和拉伸速率对推进剂应力-应变曲线的影响规律。研究表明,围压环境下推进剂应力-应变曲线没有明显的"脱湿"点,推进剂的抗拉强度明显提高;快速拉伸条件下,围压环境极大地降低了推进剂的延伸率,23℃常温8 MPa围压环境1000mm/min拉伸速率条件下推进剂最大延伸率相对常压条件降低45%;低温围压快速拉伸条件下推进剂的力学性能最为恶劣,-50℃低温8 MPa围压环境500 mm/min拉伸速率条件下推进剂最大延伸率降至11%。相关方法和结论可为固体发动机精细结构完整性分析和贮存寿命预估提供参考。  相似文献   

17.
赵峰  常新龙 《火箭推进》2008,34(1):59-62
通过对常用失效物理模型的分析和总结,结合量子力学理论关于电子产品老化反应速率与环境温、湿度的关系,以推进剂力学性能参数为研究对象,建立了固体推进剂贮存使用寿命的湿热老化模型,并通过试验数据拟合得到具体的经验公式。该模型可作为湿热环境下固体火箭推进剂贮存使用寿命预估的理论依据,也可作为固体火箭发动机剩余寿命计算的参考模型。  相似文献   

18.
发动机药柱和推进剂方坯老化性能相关性研究   总被引:1,自引:0,他引:1  
通过长期贮存的CTPB推进剂方坯性能变化和发动机中推进剂药柱性能变化比较,研究了发动机药柱和推进剂方坯老化性能的相关性,发现发动机中不同位置的推进剂性能的变化有明显差异,内层推进剂“变软”的速率比外层慢得多。当外层推进剂强度降低较大时,内层推进剂仍有较高的保持率,几乎和推进剂初始性能相同,并且强度由内向外逐渐变化。因此。单用推进剂方坯的老化性能难于推断发动机药柱的寿命,并对这一现象对发动机寿命的影响进行了讨论。  相似文献   

19.
固体火箭发动机撞击靶板安全性数值分析   总被引:1,自引:0,他引:1  
为研究固体火箭发动机撞击安全性,建立了固体火箭发动机撞击靶板的计算模型,模型中发动机的推进剂装药采用点火增长反应速率方程.采用非线性有限元流体动力学方法,对发动机径向撞击靶板过程进行了数值模拟,分析了不同撞击速度下发动机中推进剂装药的反应情况.计算结果表明,发动机径向撞击靶板爆炸的临界速度范围为150~200 m/s;低强度多次撞击过程中推进剂会发生延迟爆轰情况.  相似文献   

20.
从理论上分析了影响固体火箭发动机性能散布的主要因素,设计了相应配套的小型试验固体火箭发动机,用于提高燃速测试精度,并应用于大型发动机的研制和批产。理论分析和测试结果表明,燃速的测试精度以及复合固体推进剂自身的燃速散布是影响固体火箭发动机性能的最主要因素,把握了复合固体推进剂燃速,可减小性能散布,确保大型固体火箭发动机批次研制和生产性能的稳定性和准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号