首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Since 1988 high sensitivity dosimeter-radiometer “Liulin” has been installed on board the MIR space station. Device measured absorbed dose rate and flux of penetrating particles. Results of measurements showed that after powerful solar proton events (SPE) September–October, 1989 and March, 1991 additional quasistable radiation belts were formed in the near earth space within the interval L=1.8−3.0. These “new” belts were observed as an additional maximums in flux (and sometimes dose) channels when crossing the SAA region. “New” belts were quasi stable and existed at least several months, decaying slightly after SPE. Dose to flux ratio analysis showed that major components of these belts were energetic electrons and protons arising in connection with preceding SPEs.  相似文献   

2.
Measurements on board the Mir space station have been used to study the dose rate and the particle flux distribution in the inner magnetosphere. The measurements have been performed with the Bulgarian-Russian dosimeter-radiometer Liulin. The paper concentrates on the dynamics of the observed "new" and "second" maxima which were created after Solar Proton Events (SPE) in the 1989-1994 time. The "second" belt was first observed after the SPE on October 20, 1989, and the last observation was after the SPE on February 20, 1994. The creation of the "new" belt is a unique phenomena seen in the Liulin data set after the SPE on March 23, 1991 and relates to the magnetic storm on March 24. The new belt fully disappears in the middle of 1993.  相似文献   

3.
采用GOSE-10卫星4~9 MeV(P2),9~15 MeV(P3),15~40 MeV(P4),40~80 MeV(P5)能段上的质子通量数据,结合质子能谱,对太阳质子事件发生前各能谱参数的变化特征进行分析,详细介绍利用能谱参数的变化特征及能量E>10 MeV的质子通量数据对太阳质子事件进行预报的新方法,并运用这种方法对2002-2006年期间太阳质子事件进行了预报.预报结果显示,预报提前量最多达到100 h以上,对质子事件的报准率达97.5%,预报方法具备一定的有效性和实用性.   相似文献   

4.
The present study examines the effects of orbit progression on the exposures within a Space Station Freedom module in a 51.6-degree inclined orbit at 450 km. The storm evolution is modeled after the November 1960 event, and the solar proton flux evolution is taken from the August 1972 solar proton event. The effects of a strong magnetic shock, such as was observed during the October 1989 event, is also modeled. The statistics on hourly average storm fields for the last forty years reveal that the largest geomagnetic storms approach a Dst value of -500 nanotesla at the storm peak. Similarly, one of the largest satellite-measured proton flux (> 10 MeV) for space exposures is the event of August 1972. The effects of orbit progression (advance of the line of nodes) is examined for the above conditions to study the variation of exposures under differing times of occurrence of the solar proton peak intensity, attainment of geomagnetic storm maximum, and the location of the line of nodes of the last geomagnetically protected orbit. The impact of the inherent inhomogeneity of the space station module is examined as a limiting factor on exposure with regard to the need of additional parasitic shielding.  相似文献   

5.
太阳质子事件(SPE,Solar Proton Events)是干扰日地空间最主要的源,大规模质子事件会影响在轨空间站实验设备的可靠性,有时甚至会威胁空间站的安全运行.提出一种基于灰色GM(1,1)和区间估计太阳质子事件预测方法;首先对1976—2010年SPE通量水平数据进行预处理,分别建立以发生时间为序列的一般SPE通量序列与极端SPE通量序列;之后将灰色GM(1,1)与区间估计相结合建立预测方法,融合反映一般SPE通量水平随周期性波动的活跃性调节系数,建立SPE通量水平长期预测模型;然后叠加不同SPE类型所得结果合成预测年份的SPE通量水平,给出未来一年或几年间SPE通量水平的变化范围;最后选取1976—2010年太阳质子事件年均值数据,分多批次预测1996—1998年和1999—2001年等SPE通量均值区间,结果表明各年实际发生SPE的通量均值均位于预测区间内,并且多年预测区间偏差最大值小于26%,实验结果还表明单次预测时长以2~3年为宜.  相似文献   

6.
Photochemical modeling and satellite data has been used to investigate the response of ozonosphere to solar proton events (SPEs) of the current (23d) maximum of solar activity. First SPE after the minima of solar activity occurred in November 1997. One of the strongest SPE after this occurred in July 2000. It was assumed in photochemical calculations that the ionization caused by solar protons in the atmosphere produced additional amount of the NOX and HOX compounds. Model runs showed strong ozone depletion in the mesosphere after SPE of 14 July 2000 for both polar regions. Corresponding study of ozone variations measured by HALOE instrument placed on board of UARS gave similar picture as the model calculations for North polar region.  相似文献   

7.
Meteor satellite observations in March, August, September and October 1989 recorded intensive solar proton events which caused a disturbed radiation situation in the near-Earth space. The paper presents the results of analyzing flux and spectral characteristics of the events and their relation to heliogeophysical situation.  相似文献   

8.
Solar particle events can give greatly enhanced radiation at aircraft altitudes, but are both difficult to predict and to calculate retrospectively. This enhanced radiation can give significant dose to aircrew and greatly increase the rate of single event effects in avionics. Validation of calculations is required but only very few events have been measured in flight. The CREAM detector on Concorde detected the event of 29 September 1989 and also four periods of enhancement during the events of 19-24 October 1989. Instantaneous rates were enhanced by up to a factor ten compared with quiet-time cosmic rays, while flight-averages were enhanced by up to a factor six. Calculations are described for increases in radiation at aircraft altitudes using solar particle spectra in conjunction with Monte Carlo radiation transport codes. In order to obtain solar particle spectra with sufficient accuracy over the required energy range it is necessary to combine space data with measurements from a wide range of geomagnetically dispersed, ground-level neutron monitors. Such spectra have been obtained for 29 September 1989 and 24 October 1989 and these are used to calculate enhancements that are compared with the data from CREAM on Concorde. The effect of cut-off rigidity suppression by geomagnetic activity is shown to be significant. For the largest event on record on 23 February 1956, there are no space data but there are data from a number of ground-level cosmic-ray detectors. Predictions for all events show very steep dependencies on both latitude and altitude. At high latitude and altitude (17 km) calculated increases with respect to cosmic rays are a factor 70 and 500 respectively for 29 September 1989 and 23 February 1956. The levels of radiation for high latitude, subsonic routes are calculated, using London to Los Angeles as an example, and can exceed 1 mSv, which is significantly higher than for Concorde routes from Europe to New York. The sensitivity of the calculations to spectral fitting, geomagnetic activity and other assumptions demonstrates the requirement for widespread carriage of radiation monitors on aircraft.  相似文献   

9.
为了更加准确地判断X级耀斑是否引发质子事件,对X级质子耀斑和非质子耀斑的耀斑积分通量、源区、CME速度、CME角宽度、背景太阳风速度及背景X射线通量的分布进行了统计研究.发现非质子耀斑和质子耀斑的积分通量、经度、CME速度和CME角宽度具有明显不同的分布.非质子耀斑大多集中在东部,耀斑积分通量小于0.3J·m-2,CME速度小于1300km·s-1的区域内;质子耀斑大多集中在中部或西部,耀斑积分通量大于0.3J·m-2,CME速度大于1300km·s-1的区域内.质子耀斑伴随的CME角宽度主要集中在360°,非质子耀斑的CME角宽度分布则相对分散.两类耀斑的背景太阳风速度和背景X射线通量分布差别不大.利用两类耀斑各个参量分布上的差异,有望提高X级耀斑预报的准确率.   相似文献   

10.
通过分析几十个典型太阳质子事件表明,具有以下特征的质子事件其后1-3天内一般有强烈地磁扰动发生:1.质子耀班级别和亮度较大(3B以上);2.质子通量在上升阶段增加很快,而在下降阶段相对来说衰减也很快(尤其是在峰值附近);3.电子通量远远大于质子通量并且和质子通量有相似的变化规律.在此基础上,利用神经网络预报太阳质子事件发生后3天内地磁扰动的趋势.  相似文献   

11.
通过分析GOES和ACE卫星大于10MeV能量段的5min平均质子通量数据,发现两者有很好的相关性,最佳相关系数显示,GOES通量数据较ACE卫星数据有数十分钟至几小时的时间延迟.这为利用ACE数据进行质子事件预警提供了依据.本文提出一种利用ACE卫星大于10MeV能量段的通量数据对质子事件进行预警的方法.该方法在2001年8月7日至2012年2月20日这11年多时间的试验中,表现出较高的报准率(76.3%)和较低的虚报率(14.7%),预警提前时间在数十分钟至几小时不等.该方法的结果与美国国家海洋和大气管理局(NOAA)空间天气预测中心(SWPC)使用的预警模型对比,具有更高的报准率,较低的虚报率,在预警时间提前量方面两者相当.   相似文献   

12.
Output current of silicon solar cells of Akebono satellite orbiting in the inner magnetosphere decreased from 13 A in 1989 to about 7 A in 2009, due to accumulated damage by energetic particles. A fair correlation between the monthly decrease rate of solar cell output current and trapped proton flux was found between 1989 and 1992, indicating that trapped energetic protons are responsible for the solar cell degradation. Simple variation from month to month was dominated by a fluctuation with one-year period and the correlation was not discernible after 1993. On the other hand, during orbiting the earth, another kind of decrease of output current emerged at low altitude above the sub-solar point, i.e., in the midst of sunlit condition. The decrease was larger in later years. The fact indicates more prominent temperature effect in the later years because of progress of the degradation. By removing data affected by the orbit condition above, variation from the same month in the previous year shows a clear oscillation due to orbit precession correlated with trapped energetic proton flux up to 1996. The amplitude of the annual variation oscillation tends to be larger than that expected from a degradation model based on energetic proton distribution of the NASA’s AP8 model. The larger oscillation amplitude suggests that the proton radiation belt was more sharply localized than given by the AP8 model throughout the early half of 1990s.  相似文献   

13.
The main properties of 11622 coronal mass ejections (CMEs) observed by the Solar and Heliospheric Observatory (SOHO) mission’s Large Angle and Spectrometric Coronagraph (LASCO-C2) from January 1996 through December 2006 are considered. Moreover, the extended database of solar proton enhancements (SPEs) with proton flux >0.1 pfu at energy >10 MeV measured at the Earth’s orbit is also studied. A comparison of these databases gives new results concerning the sources and acceleration mechanisms of solar energetic particles. Specifically, coronal mass ejections with width >180° (wide) and linear speed >800 km/s (fast) seem they have the best correlation with solar proton enhancements. The study of some specific solar parameters, such as soft X-ray flares, sunspot numbers, solar flare index etc. has showed that the soft X-ray flares with importance >M5 may provide a reasonable proxy index for the SPE production rate. From this work, it is outlined that the good relation of the fast and wide coronal mass ejections to proton enhancements seems to lead to a similar conclusion. In spite of the fact that in the case of CMEs the statistics cover only the last solar cycle, while the measurements of SXR flares are extended over three solar cycles, it is obvious for the studied period that the coronal mass ejections can also provide a good index for the solar proton production.  相似文献   

14.
In March 1991 the CRRES spacecraft measured a new transient radiation belt resulting from a solar proton event and subsequent geomagnetic disturbance. The presence of this belt was also noted by dosimeter-radiometers aboard the Mir space station (approx. 400 km, 51 degrees orbit) and by particle telescopes on the NOAA-10 spacecraft (850 km, 98 degrees). This event provides a unique opportunity to compare particle flux and dose measurements made by different instruments in different orbits under changing conditions. We present here a comparison of the measurements made by the different detectors. We discuss the topology and dynamics of the transient radiation belt over a period of more than one year.  相似文献   

15.
太阳质子事件对航天活动构成重要威胁, 预测一定时期内太阳质子通量对航天器抗辐射加固设计有重要的指导意义. 在第20至23太阳活动周的太阳质子事件数据统计分析的基础上, 建立了一个针对 E>10 MeV和 E>30 MeV太阳质子通量的新模型. 新模型与目前航天工程中常用的JPL模型相比较, 引入了太阳活动性对质子事件发生概率的影响因素, 能够评估不同太阳活动水平下的质子通量, 其结果更符合质子事件的分布特征.   相似文献   

16.
One of the strongest solar proton events (SPE) occurred in October 1989. Its forcing of the middle atmosphere chemistry including ionized components in the D-region is examined. The ionization rate, and ozone, NO and OH density temporal and spatial (vertical) deviations induced by the SPE, calculated by a 1-D time-dependent photochemical model separately for daytime and nighttime (not shown here), are used in a 1-D model of the lower ionosphere to calculate the response of ionized components to combined forcing by ionization rate and neutral chemical composition disturbances. The radio wave absorption caused by electron density disturbances after the SPE is calculated and compared with observations. The computed ozone values are compared with observations, as well.  相似文献   

17.
TEC计算方法探讨和赤道异常北驼峰时空特征测量初析   总被引:1,自引:0,他引:1  
本文探讨了应用最小曲率原理由单站微分多普勒频移数据计算TEC时所遇到的问题和解决办法。处理了用MX1502大地定位接收机于1989年8月和9月先后在陕西临潼和北京观测的NNSS卫星多普勒频移数据,得到了TEC时空分布曲线。分析这些曲线,得到了TEC赤道异常北驼峰时空特征在太阳活动高年(尤其是8月中旬太阳特大质子事件中)的某些结果。  相似文献   

18.
我国“风云一号(B)”气象卫星于1990年9月3日发射入轨,该星载有粒子成分监测器,用来探测空间粒子辐射环境,其中包括测量太阳耀斑时产生的太阳质子事件及其重粒子丰度;银河宇宙线异常成分与强度;内辐射带磁异常区的粒子通量及重粒子成分,“风云一号(B)”卫星运行半年来,我们已获取了上述有关的粒子辐射资料,在卫星上获得这些资料在我国尚属首次,本文主要分析观测到的太阳质子事件。  相似文献   

19.
介绍了AP-8模式、CRRESPRO模式和PSB97模式,并用这3种模式分别计算低高度空间300—1100km范围内的高能质子通量分布,由IDL软件绘出通量等值线图.AP-8模式通量主要受银河宇宙线调制,即受太阳活动直接影响,与太阳活动高年相比,太阳活动低年的质子通量较大;CRRESPRO模式中,因活动期和平静期的数据采集时间前后相差很短,从而使同一高度上两种环境条件下的通量分布相似.模式之间的比较结果表明,AP-8模式通量较小,CRRESFRO模式通量较大,PSB97模式通量介于二者之间,并与实测通量接近.PSB97是为低高度(1000km以下)定制的模式,在低高度上优于AP-8模式和CRRESPRO模式,能较好地计算当前条件下的低高度高能质子通量.  相似文献   

20.
The dynamics of the ISS-measured radiation dose variations since August 2000 is studied. Use is made of the data obtained with the R-16 instrument, which consists of two ionization chambers behind different shielding thicknesses. The doses recorded during solar energetic particle (SEP) events are compared with the data obtained also by R-16 on Mir space station. The SEP events in the solar maximum of the current cycle make a much smaller contribution to the radiation dose compared with the October 1989 event recorded on Mir space station. In the latter event, the proton intensity was peaking during a strong magnetic storm. The storm-time effect of solar proton geomagnetic cutoff decreases on dose variations is estimated. The dose variations on Mir space stations due to formation of a new radiation belt of high-energy protons and electrons during a sudden commencement of March 24, 1991 storm are also studied. It was for the first time throughout the ISS and Mir dose measurement period that the counting rates recorded by both R-16 channels on ISS in 2001-2002 were nearly the same during some time intervals. This effect may arise from the decreases of relativistic electron fluxes in the outer radiation belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号