首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
大容量通信卫星热真空试验方法   总被引:2,自引:2,他引:0  
文章结合大容量通信卫星的技术特点,系统总结了与之相适应的热真空试验方法改进措施,主要包括组件温度外扩过试验风险识别、红外灯阵加热器及转发器组合控温、星内真空度和污染监测、回温控制等,并对各项措施的实施效果进行了对比分析,以利进一步提高热真空试验水平。这些改进措施已成功应用于多颗大容量通信卫星热真空试验,对其他系列卫星热真空试验具有一定的借鉴意义。  相似文献   

2.
为降低真空环境下产品的控温风险,以热真空试验的控温系统为研究对象,分析串级PID温度控制原理,在串级PID控制算法基础上进行多分区及参数自整定,提出一种适用于大滞后性系统的产品控温方法。试验验证结果表明,应用此控温方法对某卫星功率放大器热真空试验进行控温,实现了较高的精度(达到±0.5 ℃)和较小的超调量(仅0.7 ℃),升、降温速率≥1.5 ℃/mm。  相似文献   

3.
文章给出控制热真空试验变温速率和高低温限的方法,它可以保证受试产品(组件、有效载荷以及航天器系统级)满足试验要求,不会因试验过程中产生的过高变温速率和超出高低温限而受到损坏,也不会由于过低的变温速率而延长热真空试验时间.  相似文献   

4.
为了提高大功率通信卫星整星热真空试验的控温精度、降低控温风险,设计了一种应用PID闭环控制技术对星上热管网络进行闭环控温进而对整星温度进行自动控制的方法。在某大功率通信卫星整星热真空试验中,进行了星上典型热分区的PID参数自整定试验,并参考自整定试验结果确定了星上PID自动控温参数,应用PID闭环自动控温方法对卫星进行整个热真空试验过程的自动控温,控温精度达到±0.5℃,满足试验控温要求,提高了试验控温的准确性与安全性。  相似文献   

5.
论述了各种类型热试验(热平衡试验、热真空试验、热循环试验)在航天器研制中的重要性及它们的试验要点。针对当前试验实践中出现的问题,强调了组件级,尤其是电子电工产品热试验(热真空试验及热循环试验)和整星级发射星热真空试验对提高航天器可靠性所起的重要作用,并提出了相应的建议。  相似文献   

6.
"嫦娥一号"卫星是我国第一颗绕月探测卫星,由于其所处特殊的热环境,造成热控设计的复杂性,随之带来的是对卫星系统热控和真空热试验提出了很高的要求。该卫星在2005-2006年一年多的时间里完成了大量的整星、系统级及大部件的真空热试验,对现有的空间环境模拟试验技术是一个严峻的考验。文章分别从外热流模拟装置设计技术、热试验支架设计技术、数据测量与控制技术等方面所做的技术创新及其在"嫦娥一号"卫星系列真空热试验中的应用情况作了简要介绍。  相似文献   

7.
祁圣君 《航天器工程》2007,16(3):120-124
通信卫星由于热试验环境和条件的特殊性,其地面设备在热试验中的连接方式随着高频段、高功率转发器的出现变得尤为重要。研究了通信卫星热试验时不同频段转发器地面测试设备在真空室内的连接方案,重点对Ka频段的解决方案及相关问题进行了详细分析和比较。  相似文献   

8.
文章概述了美国 NASA 约翰逊航天中心(JSC)进行“阿波罗”飞船热真空试验的经验,介绍了近年来中心在热真空试验设施(容器 B)中进行载人热真空试验的经验和有关技术问题。  相似文献   

9.
随着通信卫星技术的发展,收发共用已成为通信卫星有效载荷常用的设计方法,在这种情况下,无源互调(passive intermodulation,PIM)问题就显得尤为突出。为了完成整星及转发器分系统在热真空环境下的PIM指标测试,利用碳化硅吸波材料研制了一种低PIM吸波热沉,并利用该吸波热沉建立了指标小于150 dBm的低PIM测试环境,同时兼具热流模拟功能和微波功率耐受能力。在热真空环境下圆满完成了国内首次有整星参与的微波载荷无线PIM测试试验。  相似文献   

10.
温度测量是真空热试验中一个重要的测量项目,数字测量技术是适应真空热试验温度测量需求多样性的一项新的应用技术,而实现多机通信则是数字测量系统的关键技术之一。文章建立了具有多种多机通信模式的真空热试验航天器温度数字测量系统,阐述了不同多机通信模式的通信原理与协议,介绍了利用上位机管理软件VB6.0实现串行通信以及对温度数据进行管理的方法。  相似文献   

11.
为解决通信卫星真空热试验中有效载荷的部分测试电缆工作温度超出正常区间导致电缆相位特性发生极大跃变的问题,文章设计了一种新型电缆控温方法,实现了测试电缆在真空低温复杂环境下的集中控温。在某新一代通信卫星真空热试验中,应用该集中控温方法后测试电缆网的温度被严格控制在40℃±5℃,单根电缆沿路径的温度差异被控制在±3℃之内,满足了星上有效载荷的时序和相位要求,提高了地面测试的准确性。  相似文献   

12.
星载多工器是卫星有效载荷分系统中的关键部件;须对其在热真空环境下的插入损耗、波动等射频性能进行准确测量,以真实反映产品的应用性能。经过分析多工器测试系统原理组成以及导致多工器热真空试验测试数据不准确及不稳定的各项因素,确定测试电缆性能随温度变化是影响多工器热真空试验测试精度的主要因素后,给出5种改进方法,包括:以参考电缆辅助说明测试电缆变化;采用波导阵测试系统;测试电缆实施热控包覆;运用时域分析计算并剔除测试电缆变化;测试电缆多通道实时校准。最后,汇总对比这些改进方法的应用效果,推荐测试电缆多通道实时校准为最佳,为行业提高星载多工器的热真空试验测试精度提供参考。  相似文献   

13.
《航天电子对抗》2009,(4):10-10
据报道,洛·马公司成功完成了第2颗先进极高频(AEHF)军事通信卫星的热真空试验,在与飞行类似的试验环境中验证了卫星的性能和功能。  相似文献   

14.
正一流的通信卫星产品供应商和综合服务提供商中国空间技术研究院通信卫星事业部是中国通信卫星及平台产品研制开发的核心单位,拥有成熟的通信广播卫星系列产品,拥有与专业技术发展相适应的卫星系统设计、试验验证,总装和测试条件,雄厚的基础设施和一流的地面测试设备;与国际上二十多个国家开展通信卫星领域广  相似文献   

15.
航天器真空热试验测控系统应用现状及发展趋势   总被引:1,自引:1,他引:0  
航天器真空热试验是航天器研制过程中必不可少的试验项目。文章阐述了航天器真空热试验测控系统的特点和面临的挑战,总结归纳了航天器真空热试验测控系统的应用现状,分析展望了航天器真空热试验测控系统未来的发展趋势。  相似文献   

16.
介绍了地球静止轨道大容量通信卫星的发展趋势,以及地球静止轨道通信卫星的散热特点和散热能力分析,根据大容量通信卫星的发展需求,提出了热控分系统解决高功率卫星散热拟采用的热控技术。  相似文献   

17.
微放电效应是制约航天器系统功率容量的重要因素,为了精确获得微波产品的微放电性能,有必要提高微放电测试方法的性能.研究了不同天线馈源产品的微放电测试需求,提出了两种典型的辐射式微放电测试架构.这两种测试的典型构架分别为采用透波真空系统方式和采用非透波真空系统与大功率真空吸波箱相结合的实现方式.透波真空系统的微放电测试系统保证了真空测试环境,以常压环境大型吸波暗室作为功率吸收载体,保证了更高的功率吸收、更好的散热和驻波性能,适用于尺寸小的天线产品;非透波真空系统的微放电试验系统在常规的非透波真空罐中实现,不受透波真空系统尺寸限制,实现了大型天线的微放电测试.这两种微放电试验方法性能良好,覆盖了各种尺寸天线的微放电性能测试需求,顺利完成西安分院多型号天线微放电试验任务,包括国内首例大尺寸天线的微放电试验,获得了良好的效果,有力提升了我国航天器的设计研制和试验验证能力.  相似文献   

18.
针对航天器真空热试验测控数据处理现状和需求,通过引入三维数据可视化技术,设计了一种数据可视化系统。该系统运用Java 3D技术,通过虚拟场景设定,将真空热试验试件三维设计模型与热模型结合,实现温度数据—颜色映射,以云图形式显示测控数据,并实现与现有测控软件数据交互。典型试验结果表明:该可视化系统可以实时、真实、直观地显示试件在真空热试验过程中的温度变化情况,为试验过程中的实时温度监视和工况判读提供有效手段。  相似文献   

19.
当参与热真空试验的单机产品热容较大或有内热源存在时,增加热传导的方式有助于提高试验控温能力。文章针对某类单机产品的试验需求,研制具有快速升降温能力的调温平台。试验时将单机产品安装在该平台的安装面板上,平台下端面由液氮冷板提供冷边界,利用多通道控温系统对调温平台实施控温。对平台结构设计进行了热仿真和试验验证,试验温度和升降温速率均满足试验技术指标要求。目前该调温平台已成功应用于多项单机产品的热真空试验。  相似文献   

20.
《航天器工程》2017,(6):54-60
针对高分三号(GF-3)卫星技术特点和研制难点,在卫星研制期间全面实施产品保证工作。充分借鉴已有经验,以确保质量和可靠性为前提,以合成孔径雷达(SAR)载荷研制为重点,构建基于时间、要素和程序3个维度的产品保证模型,将产品保证工作融入流程并纳入计划管理。高度关注系统设计、生产、验证、总装和试验等重要环节,通过狠抓研制源头确保系统固有质量,通过严格外协管控确保产品实现,通过各级各类试验确保验证考核充分,通过精细系统级总装、测试与试验(AIT)管理确保卫星最终集成质量,通过合理举措确保在轨8年寿命。高分三号卫星产品保证工作的有效实施有力保证了卫星研制质量,亦可为其他航天器产品保证工作提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号