共查询到20条相似文献,搜索用时 15 毫秒
1.
Myrtille Laas-Bourez Gwendoline Blanchet Michel Boër Etienne Ducrott Alain Klotz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009,44(11):1270-1278
Since 2004, we observe satellites in the geostationary orbit with a network of robotic ground based fully automated telescopes called TAROT. One of them is located in France and the second at ESO, La Silla, Chile. The system processes the data in real time. Its wide field of view is useful for the discovery, the systematic survey and for the tracking of both catalogued and un-catalogued objects. We present a new source extraction algorithm based on morphological mathematic, which has been tested and is currently under implementation in the standard pipeline. Using this method, the observation strategy will correlate the measurements of the same object on successive images and give better detection rate and false alarm rate than the previous one. The overall efficiency and quality of the survey of the geostationary orbit has drastically improved and we can now detect satellites and debris in different orbits like Geostationary Transfer Orbit (GTO). Results obtained in real conditions with TAROT are presented. 相似文献
2.
I. Molotov V. Agapov V. Titenko Z. Khutorovsky Yu. Burtsev I. Guseva V. Rumyantsev M. Ibrahimov G. Kornienko A. Erofeeva V. Biryukov V. Vlasjuk R. Kiladze R. Zalles P. Sukhov R. Inasaridze G. Abdullaeva V. Rychalsky V. Kouprianov O. Rusakov E. Litvinenko E. Filippov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(7):1022-1028
A joint team of researchers under the auspices of the Center for Space Debris Information Collection, Processing and Analysis of the Russian Academy of Sciences collaborates with 15 observatories around the world to perform observations of space debris. For this purpose, 14 telescopes were equipped with charge-coupled device (CCD) cameras, Global Positioning System (GPS) receivers, CCD frame processing and ephemeris computation software, with the support of the European and Russian grants. Many of the observation campaigns were carried out in collaboration with the Astronomical Institute of the University of Bern (AIUB) team operating at the Zimmerwald observatory and conducting research for the European Space Agency (ESA), using the Tenerife/Teide telescope for searching and tracking of unknown objects in the geostationary region (GEO). More than 130,000 measurements of space objects along a GEO arc of 340.9°, collected and processed at Space Debris Data Base in the Ballistic Center of the Keldysh Institute of Applied Mathematics (KIAM) in 2005–2006, allowed us to find 288 GEO objects that are absent in the public orbital databases and to determine their orbital elements. Methods of discovering and tracking small space debris fragments at high orbits were developed and tested. About 40 of 150 detected unknown objects of magnitudes 15–20.5 were tracked during many months. A series of dedicated 22-cm telescopes with large field of view for GEO survey tasks is in process of construction. 7 60-cm telescopes will be modernized in 2007. 相似文献
3.
Ivan Prochazka Jan Kodet Josef Blazej Georg Kirchner Franz Koidl 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
We are reporting on a design, construction and performance of solid state photon counting detector package which has been designed for laser tracking of space debris. The detector has been optimized for top photon detection efficiency and detection delay stability. The active area of the commercially available avalanche photodiode manufactured on Si (SAP500 supplied by Laser Components, Inc.) is circular with a diameter of 500 μm. The newly designed control circuit enables to operate the detection sensor at a broad range of biases 5–50 V above its breakdown voltage of 125 V. This permits to select a right trade-off between photon detection efficiency, timing resolution and dark count rate. The photon detection efficiency exceeds 70% at the wavelength of 532 nm. This is the highest photon detection efficiency ever reported for such a device. The timing properties of the detector have been investigated in detail. The timing resolution is better than 80 ps r.m.s, the detection delay is stable within units of picoseconds over several hours of operation. The detection delay stability in a sense of time deviation of 800 fs has been achieved. The temperature change of the detection delay is 0.5 ps/K. The detector has been tested as an echo signal detector in laser tracking of space debris at the satellite laser station in Graz, Austria. Its application in lunar laser ranging is under consideration by several laser stations. 相似文献
4.
Myrtille Laas-Bourez Sébastien Wailliez Florent Deleflie Alain Klotz Dominique Albanese Nathalie Saba 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The MéO (for Métrologie Optique) telescope is the Satellite and Lunar Laser Ranging (SLR) dedicated telescope of Observatoire de la Côte d’Azur (France) located at plateau de Calern. The telescope uses an altazimuth mount. The motorization of the mount has a capability of 6 deg/s allowing the follow up of Low Earth Orbits (LEO) satellites, as well as Medium Earth Orbits (MEO) and geostationary (GEO) satellites, and the Moon. The telescope has a primary mirror of 1.54 m. It uses a Nasmyth focus equipped with an EMCCD camera. The telescope field of view, defined by the equivalent focal length and the size of the camera, is currently 3.4 arcmin × 3.4 arcmin. 相似文献
5.
6.
S. Montebugnoli G. Pupillo E. Salerno S. Pluchino M. di Martino 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
An accurate measurement of the position and trajectory of the space debris fragments is of primary importance for the characterization of the orbital debris environment. The Medicina Radioastronomical Station is a radio observation facility that is here proposed as receiving part of a ground-based space surveillance system for detecting and tracking space debris at different orbital regions (from Low Earth Orbits up to Geostationary Earth Orbits). The proposed system consists of two bistatic radars formed by the existing Medicina receiving antennas coupled with appropriate transmitters. This paper focuses on the current features and future technical development of the receiving part of the observational setup. Outlines of possible transmitting systems will also be given together with the evaluation of the observation strategies achievable with the proposed facilities. 相似文献
7.
K. Fujita T. Hanada Y. Kitazawa A. Kawabe 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
This study proposes a motion detection and object tracking technique for GEO debris in a sequence of images. A couple of techniques (called the “stacking method” and “line-identifying technique”) were recently proposed to address the same problem. Although these techniques are effective at detecting the debris position and motion in the image sequences, there are some issues concerned with computational load and assumed debris motion. This study derives a method to estimate motion vectors of objects in image sequence and finally detect the debris locations by using a computer vision technique called an optical flow algorithm. The new method detects these parameters in low computational time in a serial manner, which implies that it has an advantage to track not only linear but also nonlinear motion of GEO debris more easily than the previous methods. The feasibility of the proposed methods is validated using real and synthesized image sequences which contain some typical debris motions. 相似文献
8.
R. Hoogendoorn E. Mooij J. Geul 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(1):167-181
Predictions of the impact time and location of space debris in a decaying trajectory are highly influenced by uncertainties. The traditional Monte Carlo (MC) method can be used to perform accurate statistical impact predictions, but requires a large computational effort. A method is investigated that directly propagates a Probability Density Function (PDF) in time, which has the potential to obtain more accurate results with less computational effort. The decaying trajectory of Delta-K rocket stages was used to test the methods using a six degrees-of-freedom state model. The PDF of the state of the body was propagated in time to obtain impact-time distributions. This Direct PDF Propagation (DPP) method results in a multi-dimensional scattered dataset of the PDF of the state, which is highly challenging to process. No accurate results could be obtained, because of the structure of the DPP data and the high dimensionality. Therefore, the DPP method is less suitable for practical uncontrolled entry problems and the traditional MC method remains superior. Additionally, the MC method was used with two improved uncertainty models to obtain impact-time distributions, which were validated using observations of true impacts. For one of the two uncertainty models, statistically more valid impact-time distributions were obtained than in previous research. 相似文献
9.
Rong-yu Sun Chang-yin Zhao 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Optical survey is a main technique for observing space debris, and precisely measuring the positions of space debris is of great importance. Due to several factors, e.g. the angle object normal to the observer, the shape as well as the attitude of the object, the variations of observed characteristics for low earth orbital space debris are distinct. When we look at optical CCD images of observed objects, the size and brightness are varying, hence it’s difficult to decide the threshold during centroid measurement and precise astrometry. Traditionally the threshold is given empirically and constantly in data reduction, and obviously it’s not suitable for data reduction of space debris. Here we offer a solution to provide the threshold. Our method assumes that the PSF (point spread function) is Gaussian and estimates the signal flux by a directly two-dimensional Gaussian fit, then a cubic spline interpolation is performed to divide each initial pixel into several sub-pixels, at last the threshold is determined by the estimation of signal flux and the sub-pixels above threshold are separated to estimate the centroid. A trail observation of the fast spinning satellite Ajisai is made and the CCD frames are obtained to test our algorithm. The calibration precision of various threshold is obtained through the comparison between the observed equatorial position and the reference one, the latter are obtained from the precise ephemeris of the satellite. The results indicate that our method reduces the total errors of measurements, it works effectively in improving the centering precision of space debris images. 相似文献
10.
Peerapong Torteeka Peng-qi Gao Ming Shen Xiao-zhong Guo Da-tao Yang Huan-huan Yu Wei-ping Zhou Liu Tong You Zhao 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(1):461-475
The presence of operational satellites or small-body space debris is a challenge for autonomous ground-based space object observation. Although most space objects exceeding 10?cm in diameter have been cataloged, the position of each space object (based on six orbital parameters) remains important and should be updated periodically, as the Earth’s orbital perturbations cause disturbances. Modern ground-based passive optical telescopes equipped with complementary metal-oxide semiconductors have become widely used in astrometry engineering, being combined with image processing techniques for target signal enhancement. However, the detection and tracking performance of this equipment when employed with image processing techniques primarily depends on the size and brightness of the space target, which appears on the monitor screen under variable background interference conditions. A small and dim target has a highly sensitive tracking error compared to a bright target. Moreover, most image processing techniques for target signal enhancement require large computational power and memory; therefore, automatic tracking of a space target is difficult. The present work investigates autonomous space target detection and tracking to achieve high-sensitivity detection and improved tracking ability for non-Gaussian and dynamic backgrounds with a simple system mechanism and computational efficiency. We develop an improved particle filter (PF) using the ensemble Kalman filter (KF) for track-before-detect (TBD) frameworks, by modifying and optimizing the computational formula for our non-linear measurement function. We call this extended version the “ensemble Kalman PF-TBD (EnKPF-TBD).” Three sequential astronomical image datasets taken by the Asia-Pacific Ground-Based Optical Space Objects Observation System (APOSOS) telescope under different conditions are used to evaluate three proposed TBD baseline frameworks. Given an optimal random sample size, the EnKPF-TBD exhibits superior performance to PF-TBD and threshold-based unscented KF with two-dimensional peak search (2dPS). The EnKPF-TBD scheme achieves satisfactory performance for all variable background interference conditions, especially for a small and dim space target, in terms of tracking accuracy and computational efficiency. 相似文献
11.
Chang-Yin Zhao Ming-Jiang Zhang Hong-Bo Wang Wei Zhang Jian-Ning Xiong 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Based on the orbital resonance model, we study the two-dimensional phase plane structure of the motion of space debris orbiting the geosynchronous ring under the combined effects of the tesseral harmonics J22, J31 and J33 of the Earth’s gravitational field. We present the main characteristic parameters of the two-dimensional phase plane structure. We also analyze the stability of the two-dimensional phase plane structure with numerical method. Our main findings indicate that the combined effects of the tesseral harmonics J22, J31 and J33 fully determine the two-dimensional phase plane structure of the space debris, and it remains robust under the effect of the Earth’s actual gravitational field, the luni-solar perturbations and the solar radiation pressure with the normal area-to-mass ratios. 相似文献
12.
M. Möckel C. Wiedemann S. Flegel J. Gelhaus P. Vörsmann H. Klinkrad H. Krag 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Parallelism is becoming the leading paradigm in today’s computer architectures. In order to take full advantage of this development, new algorithms have to be specifically designed for parallel execution while many old ones have to be upgraded accordingly. One field in which parallel computing has been firmly established for many years is computer graphics. Calculating and displaying three-dimensional computer generated imagery in real time requires complex numerical operations to be performed at high speed on a large number of objects. Since most of these objects can be processed independently, parallel computing is applicable in this field. Modern graphics processing units (GPUs) have become capable of performing millions of matrix and vector operations per second on multiple objects simultaneously. 相似文献
13.
Gerhard Drolshagen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(7):1123-1131
When the impact risk from meteoroids and orbital debris is assessed the main concern is usually structural damage. With their high impact velocities of typically 10–20 km/s millimeter or centimeter sized objects can puncture pressure vessels and other walls or lead to destruction of complete subsystems or even whole spacecraft. Fortunately chances of collisions with such larger objects are small (at least at present). However, particles in the size range 1–100 μm are far more abundant than larger objects and every orbiting spacecraft will encounter them with certainty. Every solar cell (8 cm2 area) of the Hubble Space Telescope encountered on average 12 impacts during its 8.25 years of space exposure. Most were from micron sized particles. 相似文献
14.
Michael C.F. Bazzocchi Juan Miguel Sánchez-Lozano Houman Hakima 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(3):1155-1173
As private companies and government space agencies begin to seriously consider the task of active space debris removal, it is becoming increasingly more important to determine the highest priority objects to deorbit. This work sets forth an approach for prioritization of space debris through the utilization of Multi-Criteria Decision-Making methodologies and fuzzy logic, as well as both quantitative and qualitative criteria. The proposed debris prioritization approach considers various criteria including the orbit, size, mass, pairwise and total collision probabilities, and decay timeframe of each debris object. The means of assigning attributes to each assessment criterion is discussed in detail. To determine the weighting scheme for the criteria, a questionnaire was prepared and shared with experts in the field of space situational awareness. The work examines over two thousand critical debris objects selected from the existing debris catalog with respect to these criteria. The quantified attributes for each debris object are then aggregated through the fuzzy versions of the Analytic Hierarchy Process and the Technique for Order Preference by Similarity to Ideal Solution. The results of the analysis identify high-priority debris objects for removal from Earth-bound orbits. 相似文献
15.
On the practical exploitation of perturbative effects in low Earth orbit for space debris mitigation
Volker Schaus Elisa Maria Alessi Giulia Schettino Alessandro Rossi Enrico Stoll 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(7):1979-1991
This paper presents the results of a numerical evaluation of the natural lifetime reduction in low Earth orbit, due to dynamical perturbations. The study considers two values for the area-to-mass ratio, a nominal ratio which resembles a typical value of spacecraft in orbit today, and an enhanced ratio which covers the surface augmentation. The results were obtained with two orbit propagators, one of a semi-analytical nature and the second one using non-averaged equations of motion. The simulations for both propagators were set up similarly to allow comparison. They both use the solar radiation pressure and the secular terms of the geopotential ( and ). The atmospheric drag was turned on and off in both propagators to alternatively study the eccentricity build up and the residual lifetime. The non-averaging case also covers a validation with the full 6?×?6 geopotential. The results confirm the findings in previous publications, that is, the possibility for de-orbiting from altitudes above the residual atmosphere if a solar sail is deployed at the end-of-life, due to the combined effect of solar radiation pressure and the oblateness of the Earth. At near polar inclinations, shadowing effects can be exploited to the same end. The results obtained with the full, non-averaging propagator revealed additional de-orbiting corridors associated with solar radiation pressure which were not found by previous work on space debris mitigation. The results of both tools are compared for specific initial conditions. For nominal values of area-to-mass ratio, instead, it is confirmed that this resonance effect is negligible.The paper then puts the findings in the perspective of the current satellite catalogue. It identifies space missions which are currently close to a resonance corridor and shows the orbit evolution within the resonances with a significantly shorter residual orbital lifetime. The paper finishes with a discussion on the exploitation of these effects with regards to the long-term simulation of the space debris environment and a flux and collision probability comparison. 相似文献
16.
S. Valk A. Lemaître F. Deleflie 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
This paper provides a hamiltonian formulation of the equations of motion of an artificial satellite or space debris orbiting the geostationary ring. This theory of order 1 has been formulated using canonical and non-singular elements for eccentricity and inclination. The analysis is based on an expansion in powers of the eccentricity and of the inclination. The theory accounts for the influence of the Earth gravity field expanded in spherical harmonics, paying a particular attention to the resonance occurring for geosynchronous objects. The luni-solar perturbations are also taken into account. We present the resonant motion and its main characteristics: equilibria, stability, fundamental frequencies and width of the resonant area by comparison with a basic analytical model. Finally, we show some results concerning the long term dynamics of a typical space debris under the influence of the gravitational field of the Earth and the luni-solar interactions. 相似文献
17.
A. Francesconi C. Giacomuzzo A.M. Grande T. Mudric M. Zaccariotto E. Etemadi L. Di Landro U. Galvanetto 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
This paper discusses the impact behavior of a self-healing ionomeric polymer and compares its protection capability against space debris impacts to that of simple aluminium-alloy bumpers. To this end, 14 impact experiments on both ionomer and Al-7075-T6 thin plates with similar surface density were made with 1.5 mm aluminium spheres at velocity between 1 and 4 km/s. 相似文献
18.
Alberto Buzzoni Giuseppe Altavilla Siwei Fan Carolin Frueh Italo Foppiani Marco Micheli Jaime Nomen Noelia Sánchez-Ortiz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(1):371-393
We report on extensive photometry and low-resolution () spectroscopy of the deep-space debris WT1190F, which impacted Earth offshore from Sri Lanka, on 2015 November 13. In spite of its likely artificial origin (as a relic of some past lunar mission), the case offered important points of discussion for its suggestive connection with the envisaged scenario for a (potentially far more dangerous) natural impactor, like an asteroid or a comet.Our observations indicate for WT1190F an absolute magnitude , with a flat dependence of reflectance on the phase angle, such as ?mag?deg?1. The detected short-timescale variability suggests that the body was likely spinning with a period twice the nominal figure of , as from the observed lightcurve. In the color domain, WT1190F closely resembled the Planck deep-space probe. This match, together with a depressed reflectance around 4000 and 8500 Å may be suggestive of a “grey” (aluminized) surface texture.The spinning pattern remained in place also along the object fiery entry in the atmosphere, a feature that may have partly shielded the body along its fireball phase perhaps leading a large fraction of its mass to survive intact, now lying underwater along a tight (?km) strip of sea, at a depth of 1500?m or less.Under the assumption of Lambertian scatter, an inferred size of ?cm is obtained for WT1190F. By accounting for non-gravitational dynamical perturbations, the Area-to-Mass ratio of the body was in the range ?m2?kg?1.Both these figures resulted compatible with the two prevailing candidates to WT1190F’s identity, namely the Athena II Trans-Lunar Injection Stage of the Lunar Prospector mission, and the ascent stage of the Apollo 10 lunar module, callsign “Snoopy”. Both candidates have been analyzed in some detail here through accurate 3D CAD design mockup modelling and BRDF reflectance rendering to derive the inherent photometric properties to be compared with the observations. 相似文献
19.
Jian Huang Weidong Hu Mounir Ghogho Qin Xin Xiaoyong Du Weiwei Guo 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The increase in space debris can seriously threaten regular activities in the Low Earth Orbit (LEO) environment. Therefore, it is necessary to develop robust, efficient and reliable techniques to understand the potential motions of the LEO debris. In this paper, we propose a novel signal processing approach to detect and estimate the motions of LEO space debris that is based on a fence-type space surveillance radar system. Because of the sparse distribution of the orbiting debris through the fence in our observations, we formulate the signal detection and the motion parameter estimation as a sparse signal reconstruction problem with respect to an over-complete dictionary. Moreover, we propose a new scheme to reduce the size of the original over-complete dictionary without the loss of the important information. This new scheme is based on a careful analysis of the relations between the acceleration and the directions of arrival for the corresponding LEO space debris. Our simulation results show that the proposed approach can achieve extremely good performance in terms of the accuracy for detection and estimation. Furthermore, our simulation results demonstrate the robustness of the approach in scenarios with a low Signal-to-Noise Ratio (SNR) and the super-resolution properties. We hope our signal processing approach can stimulate further work on monitoring LEO space debris. 相似文献
20.
Yoon Kyung Seo Dong Young Rew Georg Kirchner Eunseo Park Mansoo Choi Sung Yeol Yu Jiwoong Heo Cheong Youn 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
For the development of a telescope that is capable of precisely tracking satellites and high-speed operation such as satellite laser ranging, a special method of telescope operation is required. This study aims to propose a new telescope operation method and system configuration for the independent development of a mount and an operation system which includes the host computer. Considering that the tracking of a satellite is performed in real time, communication and synchronization between the two independent subsystems are important. Therefore, this study applied the concept of time synchronization, which is used in various fields of industry, to the communication between the command computer and the mount. In this case, communication delays do not need to be considered in general, and it is possible to cope with data loss. Above all, when the mount is replaced in the future, only the general communication interface needs to be modified, and thus, it is not limited by replacement in terms of the overall system management. The performance of the telescope operation method developed in this study was verified by applying the method to the first mobile SLR system in Korea. This study is significant in that it proposed a new operation method and system configuration, to which the concept of time synchronization was applied, for the observation system that requires an optical telescope. 相似文献