首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Missions to explore Europa have been imagined ever since the Voyager mission first suggested that Europa was geologically very young. Subsequently, the Galileo spacecraft supplied fascinating new insights into this satellite of Jupiter. Now, an international team is proposing a return to the Jupiter system and Europa with the Europa Jupiter System Mission (EJSM). Currently, NASA and ESA are designing two orbiters that would explore the Jovian system and then each would settle into orbit around one of Jupiter’s icy satellites, Europa and Ganymede. In addition, the Japanese Aerospace eXploration Agency (JAXA) is considering a Jupiter magnetospheric orbiter and the Russian Space Agency is investigating a Europa lander.  相似文献   

2.
Jupiter’s icy moon Europa is one of most promising places in our Solar System where possible extraterrestrial life forms could exist either in the past or even presently. The Europa Lander mission, an exciting part of the international Europa Jupiter System Mission (EJSM/Laplace), considers in situ planetary exploration of the moon. The distance of Europa from the Earth and the Sun asks for autonomous analytical tools that maximize the scientific return at minimal resources, demanding new experimental concepts. We propose a novel instrument, based on the atomic spectroscopy of laser generated plasmas for the elemental analysis of Europa’s surface materials as far as it is in reach of the lander for example by a robotic arm or a mole, or just onboard the lander. The technique of laser-induced plasma spectrometry provides quantitative elemental analysis of all major and many trace elements. It is a fast technique, i.e. an analysis can be performed in a few seconds, which can be applied to many different types of material such as ice, dust or rocks and it does not require any sample preparation. The sensitivity is in the range of tens of ppm and high lateral resolution, down to 50 μm, is feasible. In addition, it provides the potential of depth profiling, up to 2 mm in rock material and up to a few cm in more transparent icy matrices. Key components of the instrument are presently developed in Germany for planetary in situ missions. This development program is accompanied by an in-depth methodical investigation of this technique under planetary environmental conditions.  相似文献   

3.
木星冰卫星(尤其是"木卫2")在整个太阳系中有非常独特的探测价值,也是当前国际深空探测最前沿、最受关注的领域之一。在对国外相关探测技术归纳总结的同时,结合木星冰卫星冰下海洋探测的若干科学问题,次表层模型、温度廓线及探测深度、电离层的影响等方面,提供了几种木星冰卫星冰下液态水海洋探测的新思路,并给出了一些初步的系统框架设计和次表层介电特性仿真分析等结果。通过对新方法、新模式的探索,有望对我国自主木星冰卫星的次表层液态海洋探测起到良好的借鉴作用。  相似文献   

4.
This paper reviews the utility of analog environments in preparations for a Europa lander mission. Such analogs are useful in the demonstration and rehearsal of engineering functions such as sample acquisition from an icy surface, as well as in the exercise of the scientific protocols needed to identify organic, inorganic and possible biological impurities in ice. Particular attention is drawn to Antarctic and Arctic analog sites where progress in these latter areas has been significant in recent years.  相似文献   

5.
Three major features make Europa a unique scientific target for a lander-oriented interplanetary mission: (1) the knowledge of the composition of the surface of Europa is limited to interpretations of the spectral data, (2) a lander could provide unique new information about outer parts of the solar system, and (3) Europa may have a subsurface ocean that potentially may harbor life, the traces of which may occur on the surface and could be sampled directly by a lander. These characteristics of Europa bring the requirement of safe landing to the highest priority level because any successful landing on the surface of this moon will yield scientific results of fundamental importance. The safety requirements include four major components. (1) A landing site should preferentially be on the anti-Jovian hemisphere of Europa in order to facilitate the orbital maneuvers of the spacecraft. (2) A landing site should be on the leading hemisphere of Europa in order to extend the lifetime of a lander and sample pristine material of the planet. (3) Images with the highest possible resolution must be available for the selection of landing sites. (4) The terrain for landing must have morphology (relief) that minimizes the risk of landing and represents a target that is important from a scientific point of view. These components severely restrict the selection of regions for landing on the surface of Europa. After the photogeologic analysis of all Galileo images with a resolution of better than about 70 m/pixel taken for the leading hemisphere of Europa, we propose one primary and two secondary (backup) landing sites. The primary site (51.8°S, 177.2°W) is within a pull-apart zone affected by a small chaos. The first backup site (68.1°S, 196.7°W) is also inside of a pull-apart zone and is covered by images of the lower resolution (51.4 m/pixel). The second backup site (2.4°N, 181.1°W) is imaged by relatively low-resolution images (∼70 m/pixel) and corresponds to a cluster of small patches of dark and probably smooth plains that may represent landing targets of the highest scientific priority from the scientific point of view. The lack of the high-resolution images for this region prevents, however, its selection as the primary landing target.  相似文献   

6.
An international effort dedicated to the science exploration of Jupiter system planned by ESA and NASA in the beginning of the next decade includes in-depth science investigation of Europa. In parallel to EJSM (Europa-Jupiter System Mission) Russia plans a Laplace-Europa Lander mission, which will include another orbiter and the surface element: Europa Lander. In-situ methods on the lander provide the only direct way to assess environmental conditions, and to perform the search for signatures of life. A critical advantage of such in situ analysis is the possibility to enhance concentration and detection limits and to provide ground truth for orbital measurements. The science mission of the lander is biological, geophysical, chemical, and environmental characterizations of the Europa surface. This review is dedicated to methods and strategies of geophysical and environmental measurements to be performed at the surface of Europa, and their significance for the biological assessment, basing on the concept of a relatively large softly landed module, allowing to probe a shallow subsurface. Many of the discussed methods were presented on the workshop “Europa Lander: Science Goals and Experiments” held in Moscow in February 2009. Methods and instruments are grouped into geophysical package, means of access to the subsurface, methods of chemical and structural characterization, and methods to assess physical conditions on the surface.  相似文献   

7.
The planned Europa Jupiter System Mission (EJSM) will provide a unique opportunity to place scientific instruments onto the surface of Jupiter’s moon Europa in the late 2020s. After the Galileo mission, this will be a long awaited chance to have a close glimpse into some of the mysteries of this moon. Care must be taken in the choice of in-situ science that will be undertaken on the surface.  相似文献   

8.
Life, defined as a chemical system capable of transferring its molecular information via self-replication and also capable of evolving, must develop within a liquid to take advantage of the diffusion of complex molecules. On Earth, life probably originated from the evolution of reduced organic molecules in liquid water. Organic matter might have been formed in the primitive Earth's atmosphere or near hydrothermal vents. A large fraction of prebiotic organic molecules might have been brought by extraterrestrial-meteoritic and cometary dust grains decelerated by the atmosphere. Any celestial body harboring permanent liquid water may therefore accumulate the ingredients that generated life on the primitive Earth. The possibility that life might have evolved on early Mars when water existed on the surface marks it as a prime candidate in a search for bacterial life beyond the Earth. Europa has an icy carapace. However, cryovolcanic flows at the surface point to a possible water subsurface region which might harbor a basic life form. The atmosphere and surface components of Titan are also of interest to exobiology for insight into a hydrocarbon-rich chemically evolving world. One-handed complex molecules and preferential isotopic fractionation of carbon, common to all terrestrial life forms, can be used as basic indicators when searching for life beyond the Earth.  相似文献   

9.
Europa is one of the most promising exploration targets in search for extraterrestrial life. In the observation of Europa, halo orbits are suitable locations, because they are periodic and three-dimensional, and stationary with respect to Europa. However, halo orbits are naturally unstable and thus need stationkeeping. This study addresses the stationkeeping problem of halo orbits in the Jupiter-Europa system perturbated by another Galilean moon Io, in which case Io’s mass and orbital rate are assumed to be unknown. A tight stationkeeping scheme is proposed while accounting for autonomous navigation. To deal with the unknown gravitational perturbation from Io, the mass and orbital rate of Io are estimated during the flight and are then used to enhance the control robustness and stability, and improve the navigation accuracy. The control saturation problem is addressed by introducing adjustable parameters into the control law. The accuracy and error distribution of estimation is evaluated through Monte Carlo simulation.  相似文献   

10.
Planned future exploration missions to the Jovian satellite Europa have a strong astrobiological motivation. Characterization of the potential habitability of the liquid water environments, and searching for life signals are the main astrobiological objectives of these missions. To meet these objectives specific strategies and instrumentation are required. Here we discuss some scenarios for the development of Europa potential biospheres. These scenarios are based on assumptions of the life similarity concept and knowledge about terrestrial life in extreme environments. Since the potential habitable environments on Europa are in the interior of the satellite it is not possibly to directly detect life. However, there are processes that link aqueous sub-surface environments with the near-surface environment, such as tectonism or magmatism. Therefore, by analysing endogenous materials that arise from the interior it is possible to make predictions about what is in the sub-surface. We propose some measurements and instrumentation for future missions to detect biosignatures on the upper layers of Europa, including the simple physico-chemical traces of metabolism to complex biomolecules or biostructures. Raman spectroscopy or biosensor technologies are the future for in situ exploration of the Solar System.  相似文献   

11.
Europa planetary protection for Juno Jupiter Orbiter   总被引:1,自引:0,他引:1  
NASA’s Juno mission launched in 2011 and will explore Jupiter and its near environment starting in 2016. Planetary protection requirements for avoiding the contamination of Europa have been taken into account in the Juno mission design. In particular Juno’s polar orbit, which enables scientific investigations of parts of Jupiter’s environment never before visited, also greatly assist avoiding close flybys of Europa and the other Galilean satellites.  相似文献   

12.
The dynamics of orbits around planetary satellites, taking into account the gravitational attraction of a third-body and the non-uniform distribution of mass of the planetary satellite, is studied. The Hamiltonian considered is explicitly time-dependent. Conditions for frozen orbits are presented. Low-altitude, near-polar orbits, very desirable for scientific missions to study planetary satellites such as the Jupiter’s moon Europa, are analyzed. Lifetimes for these orbits are computed through the single and double averaged method. Comparison between the results obtained by the single and double averaged method is presented. The single-averaged model is more realistic, since it does not eliminate the term due to the equatorial ellipticity of the planetary satellite as done by the double-averaged problem. Considering the single-averaged method, we found unstable frozen orbits where the satellite does not impact with the surface of Europa for at least 200 days. We present an approach using the unaveraged disturbing potential to analyze the effects of these terms in the amplitude of the eccentricity.  相似文献   

13.
The heat transfer in a regolith subsurface layer of thickness 20 m has been theoretically simulated for the areas near Mercury's north pole aiming at the clarification of the possible existence of subsurface ice formations of different form. The paper considers different models of the icy regolith structure and composition: pure uniform amorphous ice; a porous dispersive system with ice-filled pores and voids; permafrost. For comparison the heat transfer in dry iceless regolith has been considered as well. It has been shown that the line of maximum distribution of subsurface icy formations depends on the icy regolith model, but for any one in the “hot” regions it does not go below 70°. For the “cool” regions this line has been shown to go from 5° to 10° southward than that for the “hot” ones. The possible thickness of icy regolith near the pole has been estimated for different models assuming an interior heat flow of 15 mW m−2. It has been shown that the maximum thickness of this layer takes place at the pole and is equal to 10 km for any model.  相似文献   

14.
We review laboratory data and models on sputter-induced erosion and chemical alterations of ice films and apply the results to icy grains and satellites exposed to magnetospheric ion bombardment. We show that the source of the plasma in the inner magnetosphere of Saturn is likely to be the sputter erosion of the icy objects in this region and consider the sputter erosion and possible stabilization of the E-ring. Ion-induced polymerization is discussed as a source of the darkened rings of Uranus.  相似文献   

15.
Charged particle fluxes on the trajectory of future Russian space research mission to Jupiter and its satellite Europa are investigated. The existing experimental data and models of Jupiter’s main magnetic field and radiation belts are summarized. Preliminary results of computations of energetic particle fluxes and radiation doses for each stage of the flight are given. Special attention is paid to estimation of radiation conditions in Europa’s orbit and on its surface; influence of the satellite on spatial distribution of the fluxes of charged particles of various energies is studied.  相似文献   

16.
Comet Halley studies indicate most of the nucleus is covered by an insulating crust, presumed of pyrolysed organic material. The subcrust is warmed and percolated by gases within 2AU, so provides one habitat for primitive replicating organisms. Cracks and crevices within contaminated ice in the craters provides a habitat for photosynthesising organisms. Subsurface lakes on the Europa model, though insulated by some metres of ice, would require a trigger (perhaps meteorite impact and energy source (chemical or metabolic energy) to initiate and maintain a suitable-habitat on short period comets. Constraints on transfer between comets and other planetary bodies implies that radiation-resistant species with lengthy hibernation potential would be expected.  相似文献   

17.
Based on the computed equilibrium temperature of evaporating dirty water-ice grains, dirty water-ice halo is examined, taking into account of a size dependence of terminal velocity of dust at P/Halley. It is found that due to an enhanced grain's temperature caused by dirtiness, icy halo cannot extend over 100 km from the nucleus when comet approaches inside a solar distance r of 1 AU. Therefore, it is unlikely that the ice bands in the near infrared wavelengths could be detected in the cometary coma at r<1 AU.  相似文献   

18.
Key information on Europa’s interior can be gained by monitoring tidally-induced surface deformations from orbiting and landed spacecraft. Such observations would provide constraints on the thickness and rheology of Europa’s ice and liquid water layer, being thus an important tool to characterize basic physical properties of the satellite’s putative subsurface water ocean. Focusing on the outer ice-I layer we will present relations between the interior of Europa and key tidal parameters that can be retrieved from an instrument suite monitoring tidally-induced changes of local gravity, tilt, latitude and strain at the surface. A most promising approach would involve laser altimetry and gravitational field observations from an orbiting spacecraft combined with monitoring of tidally-induced gravity and tilt changes at the surface. However, tidal measurements at the surface may be significantly impeded by instrumental drift, instrument coupling to the surface, local sources of noise and the presumably short life-time of the instruments due to the harsh radiation environment.  相似文献   

19.
We present experimental results in order to understand the physico-chemical effects induced by fast ions irradiating sulfur bearing molecules. The experiments are relevant both to Solar System objects (icy satellites, comets, TNOs) and icy mantles on grains in the interstellar medium. Here we concentrate on the application to the Galilean moons that are exposed to high energetic particle fluxes in the jovian magnetosphere.  相似文献   

20.
彗星富含挥发物,这表明它们形成并长期保存于太阳系外部低温区。本文分析了星云盘外缘区的结构,论证了那里不可能存在彗星形成带。作者认为,彗星是木星到海王星这个区域中的残存星子演变而成的。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号