首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Incoherent scatter radar (ISR) is the most powerful ground-based measurement facility to study the ionosphere. The plasma lines are not routinely detected by the incoherent scatter radar due to the low intensity, which falls below the measured spectral noise level of the incoherent scatter radar. The plasma lines are occasionally enhanced by suprathermal electrons through the Landau damping process and detectable to the incoherent scatter radar. In this study, by using the European Incoherent Scatter Association (EISCAT) UHF incoherent scatter radar, the experiment observation presents that the enhanced plasma lines were observed. These plasma lines were considered as manifest of the suprathermal electrons generated by the high-frequency heating wave during the ionospheric modification. The electron density profile is also obtained from the enhanced plasma lines. This study can be a promising technique for obtaining the accurate electron density during ionospheric modification experiment.  相似文献   

2.
Topside sounding electron density profiles are analyzed to explore interrelations of the F2 layer critical frequency and the peak height for a representative set of conditions provided by ISIS1, ISIS2, IK19 and Cosmos-1809 satellites for the period of 1969–1987. The foF2 and hmF2 are delivered with exponential extrapolation of electron density profile to zero of its 1st derivative. It is shown that the linear regression exists between foF2 and hmF2 under different conditions. The linkage between the two parameters amended to the empirical model of the peak height [Gulyaeva, T.L., Bradley, P.A., Stanislawska, I., Juchnikowski, G. Towards a new reference model of hmF2 for IRI. Adv. Space Res. 42, 666–672, doi:10.1016/j.asr.2008.02.021, 2008] results in an empirical model of the both foF2 and hmF2 expressed by superposition of functions in terms of local-time, season, geodetic longitude, modified dip latitude and solar activity. For the solar activity we use a proxy Fsp index averaged from the mean solar radio flux F10.7s for the past 81 days (3 solar rotations) and F10.7 value for 1 day prior the day of observation. Impact of geomagnetic activity is not discernible with the topside sounding data due to mixed positive and negative storm-time effects. Appreciable differences have been revealed between IRI-CCIR predictions and outcome of the new model which might be attributed to the different techniques of the peak electron density and height derivation, different epochs and different global distribution of the source data as well as the different mathematical functions involved in the maps and the model presentation.  相似文献   

3.
The incoherent scatter radar (ISR) facility in Kharkov, Ukraine (49.6°N, 36.3°E) measures vertical profiles of electron density, electron and ion temperature, and ion composition of the ionospheric plasma up to 1100 km altitude. Acquired measurements constitute an accurate ionospheric reference dataset for validation of the variety of models and alternative measurement techniques. We describe preliminary results of comparing the Kharkov ISR profiles to the international reference ionosphere (IRI), an empirical model recognized for its reliable representation of the monthly-median climatology of the density and temperature profiles during quiet-time conditions, with certain extensions to the storm times. We limited our comparison to only quiet geomagnetic conditions during the autumnal equinoxes of 2007 and 2008. Overall, we observe good qualitative agreement between model and data both in time and with altitude. Magnitude-wise, the measured and modeled electron density and plasma temperatures profiles appear different. We discovered that representation accuracy improves significantly when IRI is driven by observed-averaged values of the solar activity index rather than their predictions. This result motivated us to study IRI performance throughout protracted solar minimum of the 24th cycle. The paper summarizes our observations and recommendations for optimal use of the IRI.  相似文献   

4.
The electron density profiles in the bottomside F2-layer ionosphere are described by the thickness parameter B0 and the shape parameter B1 in the International Reference Ionosphere (IRI) model. We collected the ionospheric electron density (Ne) profiles from the FORMOSAT-3/COSMIC (F3/C) radio occultation measurements from DoY (day number of year) 194, 2006 to DoY 293, 2008 to investigate the daytime behaviors of IRI-B parameters (B0 and B1) in the equatorial regions. Our fittings confirm that the IRI bottomside profile function can well describe the averaged profiles in the bottomside ionosphere. Analysis of the equatorial electron density profile datasets provides unprecedented detail of the behaviors of B0 and B1 parameters in equatorial regions at low solar activity. The longitudinal averaged B1 has values comparable with IRI-2007 while it shows little seasonal variation. In contrast, the observed B0 presents semiannual variation with maxima in solstice months and minima in equinox months, which is not reproduced by IRI-2007. Moreover, there are complicated longitudinal variations of B0 with patterns varying with seasons. Peaks are distinct in the wave-like longitudinal structure of B0 in equinox months. An outstanding feature is that a stable peak appears around 100°E in four seasons. The significant longitudinal variation of B0 provides challenges for further improving the presentations of the bottomside ionosphere in IRI.  相似文献   

5.
Accurate knowledge of the electron density is the key point in correcting ionospheric delays of electromagnetic measurements and in studying ionosphere physics. During the last decade Global Navigation Satellite Systems (GNSS) have become a promising tool for monitoring ionospheric parameters such as the total electron content (TEC). In this contribution we present a four-dimensional (4-D) model of the electron density consisting of a given reference part, i.e., the International Reference Ionosphere (IRI), and an unknown correction term expanded in terms of multi-dimensional base functions. The corresponding series coefficients are calculable from the satellite measurements by applying parameter estimation procedures. Since satellite data are usually sampled between GPS satellites and ground stations, finer structures of the electron density are modelable just in regions with a sufficient number of ground stations. The proposed method is applied to simulated geometry-free GPS phase measurements. The procedure can be used, for example, to study the equatorial anomaly.  相似文献   

6.
An empirical model of electron density (Ne) was constructed by using the data obtained with an impedance probe on board Japanese Hinotori satellite. The satellite was in circular orbit of the height of 600 km with the inclination of 31 degrees from February 1981 to June 1982. The constructed model gives Ne at any local time with the time resolution of 90 min and between −25 and 25 degrees in magnetic latitude with its resolution of 5 degrees in the range of F10.7 from 150 to 250 under the condition of Kp < 4. Spline interpolations are applied to the functions of day of year, geomagnetic latitude and solar local time, and linear interpolation is applied to the function of F10.7. Longitude dependence of Ne is not taken into account. Our density model can reproduce solar local time variation of electron density at 600 km altitude better than current International Reference Ionosphere (IRI2001) model which overestimates Ne in night time and underestimates Ne in day time. Our density model together with electron temperature model which has been constructed before will enable more understanding of upper ionospheric phenomenon in the equatorial region.  相似文献   

7.
A simple semi-empirical model to determine the maximum electron concentration in the ionosphere (NmF2NmF2) for South American locations is used to calculate NmF2NmF2 for a northern hemisphere station in the same longitude sector. NmF2NmF2 is determined as the sum of two terms, one related to photochemical and diffusive processes and the other one to transport mechanisms. The model gives diurnal variations of NmF2NmF2 representative for winter, summer and equinox conditions, during intervals of high and low solar activity. Model NmF2NmF2 results are compared with ionosonde observations made at Toluca-México (19.3°N; 260°E). Differences between model results and observations are similar to those corresponding to comparisons with South American observations. It seems that further improvement of the model could be made by refining the latitude dependencies of coefficients used for the transport term.  相似文献   

8.
We present the solar wind plasma parameters obtained from the Wind spacecraft during more than nine years, encompassing almost the whole solar cycle 23. Since its launch in November 1994 Wind has frequently observed the in-ecliptic solar wind upstream of the Earth’s bow shock. The WIND/WAVES thermal noise receiver was specially designed to measure the in situ plasma thermal noise spectra, from which the electron density and temperature can be accurately determined. We present and discuss histograms of such measurements performed from 1994 to 2003. Using these large data sets, we study the density and core temperature variations with solar activity cycle and with different regimes of the solar wind. We confirm the anticorrelation of the electron density with the sunspot number, and obtain a positive correlation of the core temperature, with the sunspot number.  相似文献   

9.
The long-term (solar cycle) changes in the Sun and how it affects the ionospheric F-region observed at São José dos Campos (23.2° S, 45.9° W), Brazil, a location under the southern crest of the equatorial ionospheric anomaly, have been investigated in this paper. The dependence of the F-region peak electron density (foF2) on solar activity during the descending phase of the 23rd solar cycle for the periods of high, medium, and low solar activity has been studied. The ionospheric F-region peak electron densities observed during high and medium solar activity show seasonal variations with maxima close to the equinox periods, whereas during the low solar activity the maxima during the equinox periods is absent. However, during the low solar activity only change observed is a large decrease from summer to winter months. We have further investigated changes in the different ionospheric F-region parameters (minimum virtual height of the F-region (h′F), virtual height at 0.834foF2 (hpF2), and foF2) during summer to winter months in low solar activity periods, 2006–2007 and 2007–2008. Large changes in the two ionospheric parameters (hpF2 and foF2) are observed during summer to winter months in the two low solar activity periods investigated.  相似文献   

10.
A study on the variability of the equatorial ionospheric electron density was carried out at fixed heights below the F2 peak using one month data for each of high and low solar activity periods. The data used for this study were obtained from ionograms recorded at Ilorin, Nigeria, and the study covers height range from 100 km to the peak of the F2 layer for the daytime hours and height range from 200 km to the peak of the F2 layer for the nighttime hours. The results showed that the deviation of the electron density variation from simple Chapman variation begins from an altitude of about 200 km for the two months investigated. Daytime minimum variability of between 2.7% and 9.0% was observed at the height range of about 160 and 200 km during low solar activity (January 2006) and between 3.7% and 7.8% at the height range of 210 and 260 km during high solar activity (January 2002). The nighttime maximum variability was observed at the height range of 210 and 240 km at low solar activity and at the height range of 200 and 240 km at high solar activity. A validation of IRI-2007 model electron density profile’s prediction was also carried out. The results showed that B0 option gives a better prediction around the noontime.  相似文献   

11.
Since 1995, with the first GPS occultation mission on board Low Earth Orbiter (LEO) GPS/MET, inversion techniques were being applied to GPS occultation data to retrieve accurate worldwide distributed refractivity profiles, i.e. electron density profiles in the case of Ionosphere. Important points to guarantee the accuracy is to take into account horizontal gradients and topside electron content above the LEO orbit. This allows improving the accuracy from 20% to 50%, depending on the conditions, latitude and epoch regarding to Solar cycle as reported in previous works.  相似文献   

12.
In this study, predictions of the E-CHAIM ionospheric model are compared with measurements by the incoherent scatter radars RISR at Resolute Bay, Canada, in the northern polar cap. Reasonable coverage was available for all seasons except winter for which no conclusions were drawn. It is shown that ratios of the model-to measured electron densities are close to unity in the central part of the F layer, around its peak. This is particularly evident for summer daytime. Distributions of the ratios are wider for other seasons indicating larger number of cases when the model underestimates or overestimates. E-CHAIM underestimates the electron density at ionospheric topside and bottomside by ~ 10–20 %. At the bottomside, the underestimations are strongest in summer and equinoctial nighttime. At the topside, the underestimations are strongest in autumn nighttime. Model overestimations are noticeable in the middle part of the F layer during dawn hours in autumn. Overall, the model tends to not predict highest-observed peak electron densities and the largest-observed heights of the peak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号