首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ionospheric scintillation and TEC (Total Electron Content) variations are studied using GPS (Global Positioning System) measurements at an Indian low latitude station Surat (21.16°N, 72.78°E; Geomagnetic: 12.90°N, 147.35°E), situated near the northern crest of the equatorial anomaly region. The results are presented for data collected during the initial phase of current rising solar activity (low to moderate solar activity) period between January 2009 and December 2011. The results show that within a total number of 656 night-time scintillation events, 340 events are observed with TEC depletions, Rate of change of TEC (ROT) fluctuations and enhancement of Rate of change of TEC Index (ROTI). A comparison of night-time scintillation events from the considered period reveal strong correlation amongst the duration of scintillation activity in S4 index, TEC depletion, ROT fluctuations and ROTI enhancement in the year 2011, followed by the year 2010 and least in 2009. The statistical analyses of scintillation activity with enhancement of ROTI also show that about 70–96% scintillation activity took place in equinox and winter months. Moreover, from a nocturnal variation in occurrence of scintillation with (S4 ? 0.2) and enhancement of ROTI with (ROTI ? 0.5), a general trend of higher occurrence in pre-midnight hours of equinox and winter seasons is observed in both indices during the year 2011 and 2010, while no significant trend is observed in the year 2009. The results suggest the presence of F-region ionospheric irregularities with scale sizes of few kilometers and few hundred meters over Surat and are found to be influenced by solar and magnetic activity.  相似文献   

2.
We investigate the ionospheric total electron content (TEC) anomalies occurred in the Qinghai-Tibet region before three large earthquakes (M > 7.0). The temporal and spatial TEC variations were used to detect the ionospheric possible precursors of these earthquakes. We identified two TEC enhancements in the afternoon local time 9 days and 2–3 days before each earthquake, between which a TEC decrement occurred 3–6 days before earthquakes. These anomalies happened in the area of about 30° in latitude and the maximum is localized equatorward from the epicenters. These TEC anomalies can be found in all three earthquakes regardless the geomagnetic conditions. The features of these anomalies have something in common and may have differences from those caused by geomagnetic storms. Our results suggest that these ionospheric TEC perturbations may be precursors of the large earthquakes.  相似文献   

3.
This paper reports the ionospheric anomalies observed during strong local earthquakes (M?5.0) which occurred mostly in and around Uzbekistan in seismically active zones, during years 2006 to 2009 within approximately 1000 km distance from the observing GPS stations located in Tashkent and Kitab, Uzbekistan. The solar and geomagnetic conditions were quiet during occurrence of the selected strong earthquakes. We produce Total Electron Content (TEC) time series over both sites and apply them to detect anomalous TEC signals preceding or accompanying the local earthquakes. The results show anomalous increase or decrease of TEC before or during the earthquakes. In general the anomalies occurred 1–7 days before the earthquakes as ionospheric electromagnetic precursors. To identify the anomalous values of TEC we calculated differential TEC (dTEC). dTEC is obtained by subtracting monthly averaged diurnal vTEC from the values of observed vTEC at each epoch. This procedure removes normal diurnal variations of vTEC. The present results are in good agreement with the previous observations on ionospheric earthquake precursors reported by various researchers.  相似文献   

4.
This paper presents small scale (duration ?1 h, ΔTEC ? 1TECU) night-time total electron content (TEC) enhancements observed at the equatorial anomaly region in China, for the first time. The data is from a GPS receiver chain established in 2005 by Institute of Center for Space Science and Applied Research, Chinese Academy of Sciences and a GPS receiver of International GPS Service (IGS), located between Fuzhou (26.1°N, 119.3°E) and Nanning (22.8°N, 108.3°E). Two other GPS observations of IGS taken at higher latitude were also used to investigate the localization of such phenomenon. The characteristics of the night-time TEC enhancement are examined with two case studies. The TEC increases about 1–3TECU, intermittently. While the night-time TEC enhancement mainly occurs at the equatorial anomaly region, it can be observed at middle latitude as well. The spatial size of the enhancement region is less than 5° in longitude. The primary statistical study shows that the TEC enhancement is more often observed in spring and autumn, but rarely in summer. It has no dependence on geomagnetic activity. The enhancement can occur both before and after midnight.  相似文献   

5.
Employing a dual frequency GPS-receiver, ionospheric total electron (TEC) measurements have been in progress at Agra station in India (Geograph. lat. 27.2°N, long. 78°E) since 1 April 2006. In this paper, the TEC data have been analyzed for a period of one month from 1 April-1 May 2013 to examine the effect of multiple earthquakes, some of which occurred on the same day of 16 April 2013, and others occurred in the same month of April, 2013 in India and neighboring countries. We process the data using quartile and epoch analysis based statistical techniques and show that out of all the earthquakes, the one of the largest magnitude (M = 7.8) that occurred on Pakistan-Iran border caused anomalous enhancements and depletions in TEC 1–9 days before the occurrence of main sock. The E × B drift mechanism is suggested for the anomalies to occur in which the seismogenic electric field E is generated in a process suggested by Pulinets (2004).  相似文献   

6.
In this research, as part of working towards improving the IRI over equatorial region, the total electron content (TEC) derived from GPS measurements and IRI-2007 TEC predictions at Chumphon station (10.72°N, 99.37°E), Thailand, during 2004–2006 is analyzed. The seasonal variation of the IRI-2007 TEC predictions is compared with the TEC from the IRI-2007 TEC model with the option of the actual F2 plasma frequency (foF2) measurements as well as the TEC from the GPS and International GNSS service (IGS). The Chumphon station is located at the equatorial region and the low latitude of 3.22°N. For a declining phase of the solar cycle (2004–2006), the study shows that the IRI-2007 TEC underestimates the IRI-2007 TEC with the foF2 observation at the nighttime by about 5 TECU. The maximum differences are about 15 TECU during daytime and 5 TECU during nighttime. The overestimation is more evident at daytime than at nighttime. When compared in terms of the root-mean square error (RMSE), we find that the highest RMSE between GPS TEC and IRI 2007 TEC is 14.840 TECU at 1230 LT in 2004 and the lowest average between them is 1.318 TECU at 0630 LT in 2006. The noon bite-out phenomena are clearly seen in the IRI-2007 TEC with and without optional foF2 measurements, but not on the GPS TEC and IGS TEC. The IRI TEC with optional foF2 measurements gives the lowest RMSE values between IRI TEC predicted and TEC measurement. However, the TEC measurements (GPS TEC and IGS TEC) are more correct to use at Chumphon station.  相似文献   

7.
A precise determination of ionospheric total electron content (TEC) anomaly variations that are likely associated with large earthquakes as observed by global positioning system (GPS) requires the elimination of the ionospheric effect from irregular solar electromagnetic radiation. In particular, revealing the seismo-ionospheric anomalies when earthquakes occurred during periods of high solar activity is of utmost importance. To overcome this constraint, a multiresolution time series processing technique based on wavelet transform applicable to global ionosphere map (GIM) TEC data was used to remove the nonlinear effect from solar radiation for the earthquake that struck Tohoku, Japan, on 11 March, 2011. As a result, it was found that the extracted TEC have a good correlation with the measured solar extreme ultraviolet flux in 26–34 nm (EUV26–34) and the 10.7 cm solar radio flux (F10.7). After removing the influence of solar radiation origin in GIM TEC, the analysis results show that the TEC around the forthcoming epicenter and its conjugate were significantly enhanced in the afternoon period of 8 March 2011, 3 days before the earthquake. The spatial distributions of the TEC anomalous and extreme enhancements indicate that the earthquake preparation process had brought with a TEC anomaly area of size approximately 1650 and 5700 km in the latitudinal and longitudinal directions, respectively.  相似文献   

8.
The response of the ionospheric F-region in the equatorial and low latitude regions in the Brazilian sector during the super geomagnetic storm on 06–07 April 2000 has been studied in the present investigation. The geomagnetic storm reached a minimum Dst of −288 nT at 0100 UT on 07 April. In this paper, we present vertical total electron content (VTEC) and phase fluctuations (in TECU/min) from GPS observations obtained at Imperatriz (5.5°S, 47.5°W; IMPZ), Brasília (15.9°S, 47.9°W; BRAZ), Presidente Prudente (22.12°S, 51.4°W; UEPP), and Porto Alegre (30.1°S, 51.1°W; POAL) during the period 05–08 April. Also, several GPS-based TEC maps are presented from the global GPS network, showing widespread and drastic TEC changes during the different phases of the geomagnetic storm. In addition, ion density measurements on-board the satellite Defense Meteorological Satellite Program (DMSP) F15 orbiting at an altitude of 840 km and the first Republic of China satellite (ROCSAT-1) orbiting at an altitude of 600 km are presented. The observations indicate that one of the orbits of the DMSP satellite is fairly close to the 4 GPS stations and both the DMSP F15 ion-density plots and the phase fluctuations from GPS observations show no ionospheric irregularities in the Brazilian sector before 2358 UT on the night of 06–07 April 2000. During the fast decrease of Dst on 06 April, there is a prompt penetration of electric field of magnetospheric origin resulting in decrease of VTEC at IMPZ, an equatorial station and large increase in VTEC at POAL, a low latitude station. This resulted in strong phase fluctuations on the night of 06–07 April, up to POAL. During the daytime on 07 April during the recovery phase, the VTEC observations show positive ionospheric storm at all the GPS stations, from IMPZ to POAL, and the effect increasing from IMPZ to POAL. This is possibly linked to the equatorward directed meridional wind. During the daytime on 08 April (the recovery phase continues), the VTEC observations show very small negative ionospheric storm at IMPZ but the positive ionospheric storm effect is observed from BRAZ to POAL possibly linked to enhancement of the equatorial ionospheric anomaly.  相似文献   

9.
The occurrence of ionospheric scintillations with S4 ? 0.2 was studied using GPS measurements at Guilin, China (25.29°N, 110.33°E; geomagnetic: 15.04°N, 181.98°E), a station located near the northern crest of the equatorial anomaly. The results are presented for data collected from January 2009 to March 2010. The results show that nighttime amplitude scintillations only took place in February and March of the considered years, while daytime amplitude scintillations occurred in August and December of 2009. Nighttime amplitude scintillations, observed in the south of Guilin, always occurred with phase scintillations, TEC (Total Electron Content) depletions, and ROT (Rate Of change of TEC) fluctuations. However, TEC depletions and ROT fluctuations were weak during daytime amplitude scintillations, and daytime amplitude scintillations always took place simultaneously for most of the GPS satellites which appeared over Guilin in different azimuth directions. Ground-based GPS scintillation/TEC observations recorded at Guilin and signal-to-noise-ratio (SNR) measurements obtained from GPS-COSMIC radio occultation indicate that nighttime and daytime scintillations are very likely caused by ionospheric F region irregularities and sporadic E, respectively. Moreover, strong daytime amplitude scintillations may be associated with the plasma density enhancements in ionospheric E region caused by the Perseid and Geminid meteor shower activities.  相似文献   

10.
The modifications induced in the dynamics of the ionosphere by the major Japan earthquake (EQ) of March 11, 2011 (epicenter at 38.322°N, 142.369°E, M = 8.9) in presence of a magnetic storm are examined by mapping latitudinal variations of F-layer ionization density (NmF2) from 22 stations covering the epicenter zone. The changes forced into the Total Electron Content (TEC) by the major EQ in the magnetic storm ambiance are also examined from the GPS data collected at Guwahati (26° 10′ N, 91° 45’ E), situated in the major fault system of East Asia. The contributions of pre-seismic electric field as well as of magnetic storm time electric field in the observed density variations are brought into the ambit of discussion. The influence of lower atmosphere in shaping TEC features during the study case is highlighted. The effects of solar activity on density variations during such complex ambiances are also addressed.  相似文献   

11.
The periodic variation of TEC data at Xiamen station (geographic coordinate: 24.4°N, 118.1°E; geomagnetic coordinate: 13.2°N, 187.4°E) at crest of equatorial anomaly in China from 1997 to 2004 is analyzed. The characteristic of TEC association with solar activity and geomagnetic activity are also analyzed. The method of continuous wavelet, cross wavelet and wavelet coherence transform methods have been used. Analysis results show that long-term variations of TEC at Xiamen station are mainly controlled by the variations of solar activities. Several remarkable components including 128–256 days, 256–512 days and 512–1024 days exist in TEC variations. The TEC data at Xiamen station is in anti-phase with geomagnetic Dst index in semiannual time-scale, but this response only exists during high solar activity. Diurnal variation of TEC is studied for different seasons. Some features like the semiannual anomaly and winter anomaly in TEC have been reported.  相似文献   

12.
In this paper, first results from a national Global Positioning System (GPS) based total electron content (TEC) prediction model over South Africa are presented. Data for 10 GPS receiver stations distributed through out the country were used to train a feed forward neural network (NN) over an interval of at most five years. In the NN training, validating and testing processes, five factors which are well known to influence TEC variability namely diurnal variation, seasonal variation, magnetic activity, solar activity and the geographic position of the GPS receivers were included in the NN model. The database consisted of 1-min data and therefore the NN model developed can be used to forecast TEC values 1 min in advance. Results from the NN national model (NM) were compared with hourly TEC values generated by the earlier developed NN single station models (SSMs) at Sutherland (32.38°S, 20.81°E) and Springbok (29.67°S, 17.88°E), to predict TEC variations over the Cape Town (33.95°S, 18.47°E) and Upington (28.41°S, 21.26°E) stations, respectively, during equinoxes and solstices. This revealed that, on average, the NM led to an improvement in TEC prediction accuracy compared to the SSMs for the considered testing periods.  相似文献   

13.
Comparative analysis of GPS TEC data and FORMOSAT-3/COSMIC radio occultation measurements was carried out for Japan region during period of the extremely prolonged solar minimum of cycle 23/24. COSMIC data for different seasons corresponded to equinox and solstices of the years 2007–2009 were analyzed. All selected electron density profiles were integrated up to the height of 700 km (altitude of COSMIC satellites), the monthly median estimates of Ionospheric Electron Content (IEC) were retrieved with use of spherical harmonics expansion. Monthly medians of TEC values were calculated from diurnal variations of GPS TEC estimates during considered month. Joint analysis of GPS TEC and COSMIC data allows us to extract and estimate electron content corresponded to the ionosphere (its bottom and topside parts) and the plasmasphere (h > 700 km) for different seasons of 2007–2009. Percentage contribution of ECpl to GPS TEC indicates the clear dependence from the time and varies from a minimum of about 25–50% during day-time to the value of 50–75% at night-time. Contribution of both bottom-side and topside IEC has minimal values during winter season in compare with summer season (for both day- and night-time). On average bottom-side IEC contributes about 5–10% of GPS TEC during night and about 20–27% during day-time. Topside IEC contributes about 15–20% of GPS TEC during night and about 35–40% during day-time. The obtained results were compared with TEC, IEC and ECpl estimates retrieved by Standard Plasmasphere–Ionosphere Model that has the plasmasphere extension up to 20,000 km (GPS orbit).  相似文献   

14.
The present paper describes the variations of the GPS total electron content (TEC) from the International GNSS service network and surface latent heat flux (SLHF) from the Scientific Computing Division of the National Center for Atmospheric Research (NCAR) before the 11 March 2011 M9.0 Sendai earthquake, respectively. The analysis shows pronounced enhancements in the GPS TEC and SLHF a few days prior to the earthquake event. The maximum increase in the GPS TEC was about 30 TECu with an extended spatial distribution on a geomagnetically quiet day (Dst ? −20 nT, between two moderate geomagnetic storms), 8 March, 3 days prior to the earthquake. This giant positive disturbance was possibly associated with the impending disastrous earthquake and contributed from the enhanced solar radiation. Moreover, there were several anomalous regions of SLHF on the global map, but an area of enhanced SLHF very close to the epicenter. The purpose of this paper is to report the existence of the changes in surface and ionosphere, and show the potential application of multi-source data to identify seismic precursors.  相似文献   

15.
Total electron content (TEC) derived from ionosonde data recorded at the station of Korhogo (Lat = 9.33°N, Long = 5.43°W, Dip = 0.67°S) are compared to the International Reference Ionosphere (IRI) model predicted TEC for high (1999) and low (1994) solar activity conditions. The results show that the model represents the diurnal variation of the TEC as well as a solar activity and seasonal dependence. This variation is closer to that of the ionosonde-inferred TEC at high solar activity. However, at low solar activity the IRI overestimates the ionosonde-inferred TEC. The relative deviation ΔTEC is more prominent in the equinoctial seasons during nighttime hours where it is as high as 70%. At daytime hours, the relative deviation is estimated to 0–30%.  相似文献   

16.
The ionospheric variability at equatorial and low latitude region is known to be extreme as compared to mid latitude region. In this study the ionospheric total electron content (TEC), is derived by analyzing dual frequency Global Positioning System (GPS) data recorded at two stations separated by 325 km near the Indian equatorial anomaly region, Varanasi (Geog latitude 25°, 16/ N, longitude 82°, 59/ E, Geomagnetic latitude 16°, 08/ N) and Kanpur (Geog latitude 26°, 18/ N, longitude 80°, 12/ E, Geomagnetic latitude 17°, 18/ N). Specifically, we studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on the equatorial ionospheric anomaly (EIA) during the descending phase of solar activity from 2005 to 2009. It is found that the maximum TEC (EIA) near equatorial anomaly crest yield their maximum values during the equinox months and their minimum values during the summer. Using monthly averaged peak magnitude of TEC, a clear semi-annual variation is seen with two maxima occurring in both spring and autumn. Results also showed the presence of winter anomaly or seasonal anomaly in the EIA crest throughout the period 2005–2009 only except during the deep solar minimum year 2007–2008. The correlation analysis indicate that the variation of EIA crest is more affected by solar activity compared to geomagnetic activity with maximum dependence on the solar EUV flux, which is attributed to direct link of EUV flux on the formation of ionosphere and main agent of the ionization. The statistical mean occurrence of EIA crest in TEC during the year from 2005 to 2009 is found to around 12:54 LT hour and at 21.12° N geographic latitude. The crest of EIA shifts towards lower latitudes and the rate of shift of the crest latitude during this period is found to be 0.87° N/per year. The comparison between IRI models with observation during this period has been made and comparison is poor with increasing solar activity with maximum difference during the year 2005.  相似文献   

17.
In this paper, response of low latitude ionosphere to a moderate geomagnetic storm of 7–8 May 2005 (SSC: 1920 UT on 7 May with Sym-H minimum, ∼−112 nT around 1600 UT on 8 May) has been investigated using the GPS measurements from a near EIA crest region, Rajkot (Geog. 22.29°N, 70.74°E, Geomag.14°), India. We found a decrease in total electron content (TEC) in 12 h after the onset of the storm, an increase during and after 6 h of Sym-H deep minimum with a decrease below its usual-day level on the second day during the recovery phase of the storm. On 8 May, an increase of TEC is observed after sunset and during post-midnight hours (maximum up to 170%) with the formation of ionospheric plasma bubbles followed by a nearly simultaneous onset of scintillations at L-band frequencies following the time of rapid decrease in Sym-H index (−30 nT/h around 1300 UT).  相似文献   

18.
A powerful earthquake of Mw = 7.7 struck the Saravan region (28.107° N, 62.053° E) in Iran on 16 April 2013. Up to now nomination of an automated anomaly detection method in a non linear time series of earthquake precursor has been an attractive and challenging task. Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) have revealed strong potentials in accurate time series prediction. This paper presents the first study of an integration of ANN and PSO method in the research of earthquake precursors to detect the unusual variations of the thermal and total electron content (TEC) seismo-ionospheric anomalies induced by the strong earthquake of Saravan. In this study, to overcome the stagnation in local minimum during the ANN training, PSO as an optimization method is used instead of traditional algorithms for training the ANN method. The proposed hybrid method detected a considerable number of anomalies 4 and 8 days preceding the earthquake. Since, in this case study, ionospheric TEC anomalies induced by seismic activity is confused with background fluctuations due to solar activity, a multi-resolution time series processing technique based on wavelet transform has been applied on TEC signal variations. In view of the fact that the accordance in the final results deduced from some robust methods is a convincing indication for the efficiency of the method, therefore the detected thermal and TEC anomalies using the ANN + PSO method were compared to the results with regard to the observed anomalies by implementing the mean, median, Wavelet, Kalman filter, Auto-Regressive Integrated Moving Average (ARIMA), Support Vector Machine (SVM) and Genetic Algorithm (GA) methods. The results indicate that the ANN + PSO method is quite promising and deserves serious attention as a new tool for thermal and TEC seismo anomalies detection.  相似文献   

19.
To investigate the precursory signature of earthquakes on low frequency (LF) signal propagation, six earthquakes, having magnitude greater than equal to 6.5 and depth less than equal to 30 km, are being studied. The base line level of 40 kHz signal, transmitted from JJY station, Japan, is analysed with respect to Vd statistical parameter. Results show that the Vd parameter values starts fluctuating from its ambient levels before and during the days of the earthquakes, with significant variation starting 1–3 days prior to the earthquake concerned. This present study is an approach for identifying the precursory signatures of earthquakes on LF signal propagation using a new methodology with Vd parameter.  相似文献   

20.
The temporal and seasonal variations of Total Electron Content (TEC) are studied at Agra (Geographic Lat. 27.17°N, Long. 78.89°E, Dip: 41.4°), India, which is in the equatorial anomaly region, for a period of 12 months from 01 January to 31 December, 2007 using a Global Positioning System (GPS) receiver. The mean TEC values show a minimum at 0500 h LT (LT = UT + 5.5 h) and a peak value at about 1400 h LT. The lowest TEC values are observed in winter whereas largest values are observed in equinox and summer. Anomalous variations are found during the period of magnetic disturbances. These results are compared with the TEC derived from IRI-2007 using three different options of topside electron density, NeQuick, IRI01-corr, and IRI-2001. A good agreement is found between the TEC obtained at Agra and those derived from IRI models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号