首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A high-time resolution Neutron Monitor Database (NMDB) has started to be realized in the frame of the Seventh Framework Programme of the European Commission. This database will include cosmic ray data from at least 18 neutron monitors distributed around the world and operated in real-time. The implementation of the NMDB will provide the opportunity for several research applications most of which will be realized in real-time mode. An important one will be the establishment of an Alert signal when dangerous solar cosmic ray particles are heading to the Earth, resulting into ground level enhancements effects registered by neutron monitors. Furthermore, on the basis of these events analysis, the mapping of all ground level enhancement features in near real-time mode will provide an overall picture of these phenomena and will be used as an input for the calculation of the ionization of the atmosphere. The latter will be useful together with other contributions to radiation dose calculations within the atmosphere at several altitudes and will reveal the absorbed doses during flights. Moreover, special algorithms for anisotropy and pitch angle distribution of solar cosmic rays, which have been developed over the years, will also be set online offering the advantage to give information about the conditions of the interplanetary space. All of the applications will serve the needs of the modern world which relies at space environment and will use the extensive network of neutron monitors as a multi-directional spectrographic detector. On top of which, the decreases of the cosmic ray intensity – known as Forbush decreases – will also be analyzed and a number of important parameters such as galactic cosmic ray anisotropy will be made available to the users of NMDB. A part of the NMDB project is also dedicated to the creation of a public outreach website with the scope to inform about cosmic rays and their possible effects on humans, technological systems and space-terrestrial environment. Therefore, NMDB will also stand as an informative gate on space research through neutron monitor’s data usage.  相似文献   

2.
Informal science education institutions, such as science centers, play an important role in science education. They serve millions of people, including students and teachers. Within the last decade, many have tried to improve the public’s understanding of science and scientific research through informal education projects. The recent success of several space weather-related missions and research programs and the launch of the International Heliophysical Year (IHY) research and education programs make this an ideal time to inform the public about the importance and relevance of space weather to our understanding of heliophysical science. Communication efforts associated with space weather both benefit and are compromised by analogies to terrestrial weather. This paper summarizes the benefits and challenges of the terrestrial weather analogy using two exhibit evaluation studies. The paper also describes three components of the Space Science Institute’s Space Weather Outreach Program – Space Weather Center Website, Educator Workshops, and Small Exhibits – and how they can help to achieve the education goals of IHY.  相似文献   

3.
Space weather phenomena can effect many areas of commercial airline operations including avionics, communications and GPS navigation systems. Of particular importance at present is the recently introduced EU legislation requiring the monitoring of aircrew radiation exposure, including any variations at aircraft altitudes due to solar activity. With the introduction of new ultra-long-haul “over-the-pole” routes, “more-electric” aircraft in the future, and the increasing use of satellites in the operation, the need for a better understanding of the space weather impacts on future airline operations becomes all the more compelling. This paper will present the various space weather effects, some provisional results of an ongoing 3-year study to monitor cosmic radiation in aircraft, and conclude by summarising some of the identified key operational issues, which must be addressed, with the help of the science community, if the airlines want to benefit from the availability of space weather services.  相似文献   

4.
5.
Space weather forecasts are currently used in areas ranging from navigation and communication to electric power system operations. The relevant forecast horizons can range from as little as 24 h to several days. This paper analyzes the predictability of two major space weather measures using new time series methods, many of them derived from econometrics. The data sets are the Ap geomagnetic index and the solar radio flux at 10.7 cm. The methods tested include nonlinear regressions, neural networks, frequency domain algorithms, GARCH models (which utilize the residual variance), state transition models, and models that combine elements of several techniques. While combined models are complex, they can be programmed using modern statistical software. The data frequency is daily, and forecasting experiments are run over horizons ranging from 1 to 7 days. Two major conclusions stand out. First, the frequency domain method forecasts the Ap index more accurately than any time domain model, including both regressions and neural networks. This finding is very robust, and holds for all forecast horizons. Combining the frequency domain method with other techniques yields a further small improvement in accuracy. Second, the neural network forecasts the solar flux more accurately than any other method, although at short horizons (2 days or less) the regression and net yield similar results. The neural net does best when it includes measures of the long-term component in the data.  相似文献   

6.
Strategic Priority Research Program on Space Science has gained remarkable achievements. Space Environment Prediction Center (SEPC) affiliated with the National Space Science Center (NSSC) has been providing space weather services and helps secure space missions. Presently, SEPC is capable to offer a variety of space weather services covering many phases of space science missions including planning, design, launch, and orbital operation. The service packages consist of space weather forecasts, warnings, and effect analysis that can be utilized to avoid potential space weather hazard or reduce the damage caused by space storms, space radiation exposure for example. Extensive solar storms that occurred over Chinese Ghost Festival (CGF) in September 2017 led to a large enhancement of the solar energetic particle flux at 1 AU, which affected the near Earth radiation environment and brought great threat to orbiting satellites. Based on the space weather service by SEPC, satellite ground support groups collaborating with the space Tracking, Telemetering and Command system (TT&C) team were able to take immediate measures to react to the CGF solar storm event.   相似文献   

7.
The tracking of large-scale interplanetary (IP) disturbances traveling from the Sun to the Earth is a key issue in space weather studies. The Mexican Array Radio Telescope (MEXART) applies the Interplanetary Scintillation (IPS) technique to detect these solar wind disturbances and it will participate in a global warning network of space weather forecasting. We describe the data storage and computational processes carried out to manage the instrument’s real time data. These procedures are important for the MEXART calibration, operation and the scientific data reduction.  相似文献   

8.
On 11 January 2007, the People’s Republic of China conducted a successful anti-satellite test against one of their defunct polar-orbiting weather satellites. The target satellite, called Fengyun-1C, had a mass of 880 kg and was orbiting at an altitude of about 863 km when the collision occurred. Struck by a direct-ascent interceptor at a speed of 9.36 km/s, the satellite disintegrated, spreading the cataloged fragments between 200 and 4000 km, with the highest concentration near the breakup height. By the end of April 2008, 2377 pieces of debris, including the original payload remnant, had officially been cataloged by the US Space Surveillance Network. Of these, nearly 1% had reentered the Earth’s atmosphere. This deliberate act is the largest debris-generating event on record, and its consequences will adversely affect circumterrestrial space for many years.  相似文献   

9.
The main purposes of experiment “Obstanovka” (“Environment” in Russian) consisting of several instruments are to measure a set of electromagnetic and plasma phenomena characterizing the space weather conditions, and to evaluate how such a big and highly energy consuming body as the International Space Station disturbs the surrounding plasma, and how the station itself is charged due to the operation of so many instruments, solar batteries, life supporting devices, etc. Two identical Langmuir electrostatic probes are included in the experiment “Obstanovka”. In this paper the Langmuir probes for “Obstanovka” experiment are described, including the choice of geometry (spherical or cylindrical), a more reliable method for the sweep voltage generation, an adaptive algorithm for the probe’s operation. Special attention is paid to the possibility for remote upgrading of the instrument from the ground using the standard communication channels.  相似文献   

10.
随着科技的发展,空间天气对电力系统、通信导航系统和航天资产等遍布全球的技术基础设施的影响越来越深.需要加强对空间天气事件过程的理解,提升空间天气的预报能力,优化基础设施设计,从而减缓空间天气对社会造成的影响.基于这些需求,国际空间研究委员会(COSPAR)联合国际与日共存计划(ILWS)共同成立专家组,研究制定了全球2015-2025空间天气发展路线图.本文对该路线图进行介绍和解读,讨论该路线图对中国空间天气发展的启示.  相似文献   

11.
Effects of space weather on high-latitude ground systems   总被引:1,自引:0,他引:1  
Geomagnetically induced currents (GIC) in technological systems, such as power grids, pipelines, cables and railways, are a ground manifestation of space weather. The first GIC observations were already made in early telegraph equipment more than 150 years ago. In power networks, GIC may saturate transformers with possible harmful consequences extending even to a collapse of the whole system or to permanent damage of transformers. In pipelines, GIC and the associated pipe-to-soil voltages may enhance corrosion or disturb surveys associated with corrosion control. GIC are driven by the geoelectric field induced by a geomagnetic variation at the Earth’s surface. The electric and magnetic fields are primarily produced by ionospheric currents and secondarily affected by the ground conductivity. Of great importance is the auroral electrojet with other rapidly varying currents indicating that GIC are a particular high-latitude problem. In this paper, we summarize the GIC research done in Finland during about 25 years, and discuss the calculation of GIC in a given network. Special attention is paid to modelling a power system. It is shown that, when considering GIC at a site, it is usually sufficient to take account for a smaller grid in the vicinity of the particular site. Modelling GIC also provides a basis for developing forecasting and warning methods of GIC.  相似文献   

12.
Canada began research on space-relevant biological life support systems in the early 1990s. Since that time Canadian capabilities have grown tremendously, placing Canada among the emerging leaders in biological life support systems. The rapid growth of Canadian expertise has been the result of several factors including a large and technically sophisticated greenhouse sector which successfully operates under challenging climatic conditions, well planned technology transfer strategies between the academic and industrial sectors, and a strong emphasis on international research collaborations. Recent activities such as Canada’s contribution of the Higher Plant Compartment of the European Space Agency’s MELiSSA Pilot Plant and the remote operation of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic continue to demonstrate Canadian capabilities with direct applicability to advanced life support systems. There is also a significant latent potential within Canadian institutions and organizations with respect to directly applicable advanced life support technologies. These directly applicable research interests include such areas as horticultural management strategies (for candidate crops), growth media, food processing, water management, atmosphere management, energy management, waste management, imaging, environment sensors, thermal control, lighting systems, robotics, command and data handling, communications systems, structures, in-situ resource utilization, space analogues and mission operations. With this background and in collaboration with the Canadian aerospace industry sector, a roadmap for future life support contributions is presented here. This roadmap targets an objective of at least 50% food closure by 2050 (providing greater closure in oxygen, water recycling and carbon dioxide uptake). The Canadian advanced life support community has chosen to focus on lunar surface infrastructure and not low Earth orbit or transit systems (i.e. microgravity applications). To advance the technical readiness for the proposed lunar missions, including a lunar plant growth lander, lunar “salad machine” (i.e. small scale plant production unit) and a full scale lunar plant production system, a suite of terrestrial developments and analogue systems are proposed. As has been successfully demonstrated by past Canadian advanced life support activities, terrestrial technology transfer and the development of highly qualified personnel will serve as key outputs for Canadian advanced life support system research programs. This approach is designed to serve the Canadian greenhouse industry by developing compliance measures for mitigating environmental impact, reducing labour and energy costs as well as improving Canadian food security, safety and benefit northern/remote communities.  相似文献   

13.
14.
Space weather is driven and modulated by the activity in the Sun. Space weather events have the potential to inflict critical damage to space systems. Nowadays, space assets are essential in our basic needs, such as communications, cell phone networks, navigation systems, television and internet. Hence, understanding space weather dynamics and its effects on spacecraft is crucial for satellites engineers and satellite operators, in order to prevent and mitigate its impacts.In the last decade our Sun has erupted several times causing dozens of space weather events. Some of these led to satellite malfunctions and outages lasting from mere hours, up to days and weeks. This research is focused on two different space weather events, March 7–8, 2012, and September 6–10, 2017, that occurred during the last ten years and caused satellite anomalies that are related to an increase in the single event upsets rate. Single event upset is a bit flip in a memory device due to high energy particle interaction with the device sensitive volume. During these two periods, Eros B, a low Earth orbiting polar satellite detected an increased rate of single event upsets on two of its processing computers when the high energy proton flux was elevated. On both occasions X-class flares were detected, and the increased single event upsets count rate in Eros B took place only after the 100 MeV protons flux was three orders of magnitude above the background levels. In this research, Israeli satellite anomalies that were detected are first demonstrated.  相似文献   

15.
Advances in the theory and technology of artificial neural networks provide the potential for new approaches to the problems of control, identification, and diagnosis for large, complex systems. However, these approaches must be validated for specific applications before they can be exploited effectively. Because of the unique capabilities they offer, neural networks should play an important role in space exploration systems operations. After a brief introduction to neural networks is presented, some applications of neural networks to identification and control of space systems are described and discussed. They span the spectrum of relatively straightforward to rather complex applications. An explanation of how neural networks can be applied to such important tasks as fault diagnosis and accommodation is presented. Neural networks are shown to be part of the hierarchy of intelligent control where a higher order decision element monitors and supervises lower order elements for sensing and actuation.  相似文献   

16.
Like all natural hazards, space weather exhibits occasional extreme events over timescales of decades to centuries. Historical events provoked much interest, and sometimes alarm, because bright aurora becomes visible at mid-latitudes. However, they had little economic impact because the major technologies of those eras were not sensitive to space weather. This is no longer true. The widespread adoption of advanced technological infrastructures over the past 40 years has created significant sensitivity. So these events now have the potential to disrupt those infrastructures – and thus have profound economic and societal impact. However, like all extreme hazards, such events are rare, so we have limited data on which to build our understanding of the events. This limitation is uniquely serious for space weather since it is a global phenomenon. Many other natural hazards (e.g. flash floods) are highly localised, so statistically significant datasets can be assembled by combining data from independent instances of the hazard recorded over a few decades. Such datasets are the foundation on which reliable risk assessment methodologies are built. But we have a single instance of space weather so we would have to make observations for many centuries in order to build a statistically significant dataset. We show that it is not practicable to assess the risk from extreme events using simple statistical methods. Instead we must exploit our knowledge of solar-terrestrial physics to find other ways to assess these risks. We discuss three alternative approaches: (a) use of proxy data, (b) studies of other solar systems, and (c) use of physics-based modelling. We note that the proxy data approach is already well-established as a technique for assessing the long-term risk from radiation storms, but does not yet provide any means to assess the risk from severe geomagnetic storms. This latter risk is more suited to the other approaches, but significant research is needed to make progress. We need to develop and expand techniques to monitoring key space weather features in other solar systems (stellar flares, radio emissions from planetary aurorae). And to make progress in modelling severe space weather, we need to focus on the physics that controls severe geomagnetic storms, e.g. how can dayside and tail reconnection be modulated to expand the region of open flux to envelop mid-latitudes?  相似文献   

17.
加拿大移动服务系统地面遥操作模式综述   总被引:1,自引:0,他引:1       下载免费PDF全文
针对未来我国空间站机械臂地面遥操作任务需求,分析目前国际空间站上加拿大移动服务系统(Mobile Satellite Services,MSS)地面遥操作的系统设计和安全性问题。介绍了MSS的系统构成,分析了MSS地面遥操作需求,对比分析了在轨操作和地面遥操作模式的不同,以及地面遥操作的约束条件;介绍了MSS地面遥操作过程中的任务规划、任务执行和在轨调试;总结了对我国空间站机械臂遥操作的启示,为从事空间站机械臂地面遥操作的科研人员提供一定的借鉴和参考。  相似文献   

18.
Recent developments have seen a trend towards larger constellations of spacecraft, with some proposals featuring constellations of more than 10.000 satellites. While similar concepts for large constellations already existed in the past, traditional satellite deployments hardly ever feature groups of more than 100 satellites. This trend towards considerably larger satellite numbers originates from non-traditional design and operations of spacecraft by non-traditional space companies. The evolution in the space sector, precipitated by new players, is often referred to as “Space 4.0” or “New Space”. It necessitates a rethinking of the way satellites and satellite constellations are planned, designed, and operated. New operational paradigms are needed to enable automatic, optimal task definition, and scheduling in a holistic approach.This is the second of two companion papers that investigate the operations of distributed satellite systems. This second article investigates the classification of distributed satellite systems and evaluates commercial tools for automated spacecraft operations, whereas the first article performed a survey of conventional and “new space”operations of spacecraft constellations.Classification metrics for constellations are derived and evaluated with respect to their informative value concerning the operation, the automation, and the scalability of the constellation. The proposed classification system is applied to the Dove and RapidEye constellation and allows for a comparison between the presented automation approaches. Commercial tools for automated spacecraft operations are evaluated for several mission task elements, such as orbit control, orbit maintenance, and collision avoidance. Subsequently, the trends, benefits, and standardization needs for operational automation are identified.  相似文献   

19.
This paper presents an overview of the mathematical foundations for techniques in Exploratory Data Analysis (EDA) for the purpose of investigating the relationships among the numerous variables in large sets of multivariate space weather data. Specifically, we cover techniques in Principal Components Analysis (PCA) and Common Factor Analysis (CFA). These techniques are illustrated using space weather activity indices collected during the year 2002 and the corresponding noon-time hmF2 data from the International Reference Ionosphere (IRI). A CFA is used to categorize the activity indices, and a PCA is used to derive two macro-indices of activity to ascertain the strength of solar and geomagnetic activity. These macro-indices are then used to compare and contrast IRI’s noon-time hmF2 values at six different geographic stations. It was found that the correlation between hmF2 and the macro-indices more accurately represented the variation of this correlation with latitude found in previous studies than if we used an isolated conventional index, such as SSN and AE. We also found that the daily maximum value of the Polar Cap Index was dependent on both solar and geomagnetic activity, but the closely-related cross-Polar Cap Potential was solely associated with elevated levels of geomagnetic activity, which is a unique result compared to previous studies. We argue that the discrepancy can be explained by the difference in experiment designs between the two studies. This paper demonstrates the usefulness of EDA in space weather studies of large multivariate data sets.  相似文献   

20.
Status of solar sail technology within NASA   总被引:2,自引:0,他引:2  
In the early 2000s, NASA made substantial progress in the development of solar sail propulsion systems for use in robotic science and exploration of the solar system. Two different 20-m solar sail systems were produced. NASA has successfully completed functional vacuum testing in their Glenn Research Center’s Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by Alliant Techsystems Space Systems and L’Garde, respectively. The sail systems consist of a central structure with four deployable booms that support each sail. These sail designs are robust enough for deployment in a one-atmosphere, one-gravity environment and are scalable to much larger solar sails – perhaps as large as 150 m on a side. Computation modeling and analytical simulations were performed in order to assess the scalability of the technology to the larger sizes that are required to implement the first generation of missions using solar sails. Furthermore, life and space environmental effects testing of sail and component materials was also conducted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号