首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The theoretical analysis of the motion of natural space debris near the stable Earth-Moon Lagrange Points, L4 and L5, is presented with a focus on the potential debris risks to spacecraft operating near these points. Specifically, the research formulates a debris propagation model using four-body dynamics, then applies candidate probabilistic survivability models to a notional spacecraft operating at the L4 and L5 Lagrange points to quantify the collision risks to the spacecraft from natural debris particles. Of the survivability models implemented, the natural debris collision risks to spacecraft survivability are found to be incredibly low, but mitigation strategies to reduce the risk further are identified in this study. Overall, research into stable Lagrange point natural debris propagation improves understanding of the collision risks posed by the naturally occurring Kordylewski clouds and enhances operational planning for Lagrange point space missions.  相似文献   

2.
We present the spatial maps of the ionosphere–plasmasphere slab thickness τ (ratio of the vertical total electron content, TEC, to the F-region peak electron density, NmF2) during the intense ionospheric storms of October–November 2003. The model-assisted technology for estimate of the upper boundary of the ionosphere, hup, from the slab thickness components in the bottomside and topside ionosphere – eliminating the plasmasphere contribution of τ – is applied at latitudes 35° to 70°N and longitudes −10° to 40°E, from the data of 20 observatories of GPS-TEC and ionosonde networks, for selected days and hours of October and November 2003. The daily–hourly values of NmF2, hmF2 and TECgps are used as the constrained parameters for the International Reference Ionosphere extended to the plasmasphere, IRI-Plas, during the ionospheric quiet days, positive and negative storm phases for estimate of τ and hup. Good correlation has been found between the slab thickness and the upper boundary of the ionosphere for the intense ionospheric storms at October–November 2003. During the negative phase of the ionospheric storm, when the ionospheric plasma density is exhausted, the nighttime upper boundary of the ionosphere is greatly uplifted towards the magnetosphere tail, while the daytime upper boundary of the ionosphere is reduced below 500 km over the Earth.  相似文献   

3.
The knowledge of mechanical properties of lunar soil is of fundamental importance for the coming exploration of the Moon. This paper aims to investigate the fundamental deformation behavior of lunar soil and the effects of the intermediate principal stress coefficient, deviatoric stress ratio, and mean stress during the principal stress rotation. First, an improved technique was proposed to generate homogeneous samples based on the Multi-layer Undercompaction Method. Second, three series of tests on TJ-1 lunar soil simulant under the principal stress rotation were performed with a hollow cylinder apparatus at Tongji University, China. In each series of tests, only one value of the three variables mentioned above was changed while the others were kept constant. The test results demonstrate that the rotation of principal stress can result in significant plastic deformation, volumetric strain, and non-coaxiality (non-coincidence of the increment direction of principal plastic strain with the principal stress direction) of TJ-1 lunar soil simulant. In addition, it is found that the intermediate principal stress coefficient, deviatoric stress ratio, and mean stress have different influences on the four strain components, i.e. εz,εr,εθεz,εr,εθ and γzθγzθ, volumetric strain, and non-coaxiality during the principal stress rotation. The influence of deviatoric stress ratio is relatively stronger than the others. Therefore, the influence of principal stress rotation on the deformation behavior of lunar soil should be taken into account carefully in the design and construction of facilities on the lunar surface in the future.  相似文献   

4.
The geometries, dipole moments, and rotational constants for the linear and/or bent cations, Cn+1H+ and CnN+(n = 1–6), were studied by the B3LYP method with the modest basis sets. For CnH+(n = odd; 3, 5, 7) and CnN+(n = even; 2, 4, 6), the theoretical rotational constants (Bes) of closed-shell singlet C3H+, C5H+, C7H+, CCN+, C4N+, and C6N+ were calculated to be about 11,244, 2420, 885.2, 11,970, 2439, and 880.8 MHz, respectively. By contrast, the triplets are stable than the corresponding singlets for CnH+(n = odd; 2, 4, 6) and CnN+(n = even; 3, 5) except CN+.  相似文献   

5.
In this investigation, we present and discuss the response of the ionospheric F-region in the South American and East Asian sectors during an intense geomagnetic storm in August 2005. The geomagnetic storm studied reached a minimum Dst of −216 nT at 12:00 UT on 24 August. In this work ionospheric sounding data obtained of 24, 25, and 26 August 2005 at Palmas (PAL; 10.2° S, 48.2° W; dip latitude 6.6° S), São José dos Campos (SJC, 23.2° S, 45.9° W; dip latitude 17.6° S), Brazil, Ho Chi Minh City, (HCM; 10.5° N, 106.3° E; dip latitude 2.9° N), Vietnam, Okinawa (OKI; 26.3° N, 127.8° E; dip latitude 21.2° N), Japan, are presented. Also, the GPS observations obtained at different stations in the equatorial and low-latitude regions in the Brazilian sector are presented. On the night of 24–25 August 2005, the h′F variations show traveling ionospheric disturbances associated with Joule heating in the auroral zone from SJC to PAL. The foF2 variations show a positive storm phase on the night of 24–25 August at PAL and SJC during the recovery phase. Also, the GPS-VTEC observations at several stations in the Brazilian sector show a fairly similar positive storm phase on 24 August. During the fast decrease of Dst (between 10:00 and 11:00 UT) on 24 August, there is a prompt penetration of electric field of magnetospheric origin that result in abrupt increase (∼12:00 UT) in foF2 at PAL, SJC (Brazil) and OKI (Japan) and in VTEC at IMPZ, BOMJ, PARA and SMAR (Brazil). OKI showed strong oscillations of the F-region on the night 24 August resulted to the propagation of traveling atmospheric disturbances (TADs) by Joule heating in the auroral region. These effects result a strong positive observed at OKI station. During the daytime on 25 August, in the recovery phase, the foF2 observations showed positive ionospheric storm at HCM station. Some differences in the latitudinal response of the F-region is also observed in the South American and East Asian sectors.  相似文献   

6.
7.
The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV–3 TeV is presented. The angular resolution of the instrument, 1–2° at Eγ ∼ 100 MeV and ∼0.01° at Eγ > 100 GeV, its energy resolution ∼1% at Eγ > 100 GeV, and the proton rejection factor ∼106 are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.  相似文献   

8.
Median values of ionosonde hF data acquired at Ibadan (Geographic:7.4°N, 3.9°E, Magnetic: dip 6°S, and magnetic declination, 3°W), Nigeria, West Africa, have been used to determine vertical ion drift (electric field) characteristics in the postsunset ionosphere in the African region during a time of high solar activity (average F10.7 −208). The database spans from January and December 1958 during the era of International Geophysical Year (IGY) for geomagnetic quiet conditions. Bimonthly averaged diurnal variations patterns are very similar, but differ significantly in magnitude and in the evening reversal times. Also, monthly variations of F-region vertical ion drift reversal times inferred from the time of hF maximum indicates early reversal during equinoxes and December solstice months except for the month of April. Late reversal is observed during the June solstice months. The equatorial evening prereversal enhancement in vertical ion drift (Vzp) occurs largely near 1900 LT with typical values 20–45 m/s. Comparison of Ibadan ionosonde Vzp with the values of prereversal peak velocity reported for Jicamarca (South America), Kodaikanal (India), and Scherliess and Fejer global model show considerable disparity. The changes of postsunset peak in virtual height of F-layer (hFP) with prereversal velocity peak Vzp are anti-correlated. Investigation of solar effects on monthly values of Vzp and hFP revealed that these parameters are independent of monthly averaged solar flux intensity during quiet-time sunspot maximum conditions.  相似文献   

9.
The Mercury Magnetopsheric Orbiter (MMO) is one of the spacecraft of the BepiColombo mission; the mission is scheduled for launch in 2014 and plans to revisit Mercury with modern instrumentation. MMO is to elucidate the detailed plasma structure and dynamics around Mercury, one of the least-explored planets in our solar system. The Mercury Plasma Particle Experiment (MPPE) on board MMO is a comprehensive instrument package for plasma, high-energy particle, and energetic neutral particle atom measurements. The Mercury Ion Analyzer (MIA) is one of the plasma instruments of MPPE, and measures the three dimensional velocity distribution of low-energy ions (from 5 eV to 30 keV) by using a top-hat electrostatic analyzer for half a spin period (2 s). By combining both the mechanical and electrical sensitivity controls, MIA has a wide dynamic range of count rates for the proton flux expected around Mercury, which ranges from 106 to 1012 cm−2 s−1 str−1 keV−1, in the solar wind between 0.3 and 0.47 AU from the sun, and in both the hot and cold plasma sheet of Mercury’s magnetosphere. The geometrical factor of MIA is variable, ranging from 1.0 × 10−7 cm2 str keV/keV for large fluxes of solar wind ions to 4.7 × 10−4 cm2 str keV/keV for small fluxes of magnetospheric ions. The entrance grid used for the mechanical sensitivity control of incident ions also work to significantly reduce the contamination of solar UV radiation, whose intensity is about 10 times larger than that around Earth’s orbit.  相似文献   

10.
We present a compact atomic frequency standard based on the interrogation of magnetically trapped 87Rb atoms. Two photons, in the microwave and radiofrequency domain excite the atomic transition. At a magnetic field of 3.23 G this transition from ∣F = 1, mF = −1〉 to ∣F = 2, mF = 1〉 is 1st order insensitive to magnetic field variations. Long Ramsey interrogation times can thus be achieved, leading to a projected stability in the low 10−13 at 1 s. This makes this device a viable alternative to LITE and HORACE as a good candidate for replacing or complementing the rubidium frequency standards and passive hydrogen masers already on board of the GPS, GLONASS, and GALILEO satellites. Here we present preliminary results. We use an atom chip to cool and trap the atoms. A coplanar waveguide is integrated to the chip to carry the Ramsey interrogation signal, making the physics package potentially as small as (5 cm)3. We describe the experimental apparatus and show preliminary Ramsey fringes of 1.25 Hz linewidth. We also show a preliminary frequency stability σy = 1.5 × 10−12τ−1/2 for 10 < τ < 103 s. This represents one order of magnitude improvement with respect to previous experiments.  相似文献   

11.
A numerical model, based on Parker’s transport equation, describing the modulation of anomalous cosmic rays and containing diffusive shock acceleration is applied. The role of radial perpendicular diffusion at the solar wind termination shock, and as the dominant diffusion coefficient in the outer heliosphere, is studied, in particular the role it plays in the effectiveness of the acceleration of anomalous protons and helium when its latitude dependence is changed. It is found that the latitudinal enhancement of radial perpendicular diffusion towards the heliospheric poles and along the termination shock has a prominent effect on the acceleration of these particles. It results in a ‘break’ in the energy spectrum for anomalous protons at ∼6.0 MeV, causing the spectral index to change from E−1.38 to E−2.23, but for anomalous helium at ∼3.0 MeV, changing the spectral index from E−1.38 to E−2.30. When approaching the simulated TS, the changes in the modulated spectra as they unfold to a ‘steady’ power law shape at energies below 50 MeV are much less prominent as a function of radial distances when radial perpendicular diffusion is increased with heliolatitude.  相似文献   

12.
Global Positioning System (GPS) receiver on the CHAllenging Mini-satellite Payload (CHAMP) and the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, one of four on board the TIMED satellite, provide middle atmosphere temperature profiles by Radio Occultation (RO) and limb viewing infrared emission measurements, respectively. These temperature profiles retrieved by two different techniques in the stratosphere are compared with each other using more than 1300 correlative profiles in March, September and December 2005. The over-all mean differences averaged over 15 and 35 km are approximately −2 K and standard deviation is less than 3 K. Below 20 km of altitude, relatively small mean temperature differences ∼1 K are observed in wide latitudinal range except for June (during the SABER nighttime observation). In the middle to low latitudes, between 30°S and 30°N, the temperature difference increases with height from ∼0–1 K at 15 km, to ∼−4 K at 35 km of altitude. Large temperature differences about −4 to −6 K are observed between 60°S and 30°N and 31–35 km of altitude for all months and between 0° and 30°N below 16 km during June (nighttime).  相似文献   

13.
The analysis of energetic particles and magnetic field measurements from the Ulysses spacecraft has shown that in a series of events, the energy density contained in the suprathermal tail particle distribution is comparable to or larger than that of the magnetic field, creating conditions of high-beta plasma. In this work we analyze periods of high-beta suprathermal plasma occurrences (βep > 1) in interplanetary space, using the ratio (βep) of the energetic particle (20 keV to ∼5 MeV) and magnetic field energy densities from measurements covering the entire Ulysses mission lifetime (1990–2009) in order to reveal new or to reconfirm some recently defined interesting characteristics. The main key-results of the work are summarized as follows: (i) we verify that high-beta events are detected within well identified regions corresponding mainly to the vicinity of shock surfaces and magnetic structures, and associated with energetic particle intensity enhancements due to (a) reacceleration at shock-fronts and (b) unusually large magnetic field depressions. (ii) We define three considerable features for the high-beta events, concentrated on the next points: (a) there is an appreciable solar-activity influence on the high-beta events, during the maximum and middle solar-cycle phase, (b) the annual peak magnitude and the number of occurrences of high events are well correlated with the sunspot number, (c) the high-beta suprathermal plasma events present a spatial distribution in heliographic latitudes (HL) up to ∼±80°, and a specific important concentration on the low (−25° ? HL < −6°, 6° < HL ? 25°) and median (−45° ? HL < −25°, 25° < HL ? 45°) latitudes. We also reconfirm by a statistical analysis the results of Marhavilas and Sarris (2011), that the high-beta suprathermal plasma (βep > 1) events are characterized by a very large parameter βep (up to 1732.5), a great total duration (406 days) and a large percentage of the Ulysses-mission lifetime (which is equal to 6.34% of the total duration with usable measurements, and 11.3% of the duration in presence of suprathermal particles events).  相似文献   

14.
We investigated the influence of dark matter on light propagation in the solar system. We assumed the spherical symmetry of spacetime and derived the approximate solution of the Einstein equation, which consists of the gravitational attractions caused by the central celestial body, i.e. the Sun, and the dark matter surrounding it. We expressed the dark matter density in the solar system in the following simple power-law form, ?(t,r)=ρ(t)(?/r)k?(t,r)=ρ(t)(?/r)k, where t is the coordinate time; r, the radius from the central body; ?, the normalizing factor; k, the exponent characterizing r  -dependence of dark matter density; and ρ(t)ρ(t), the arbitrary function of time t. On the basis of the derived approximate solution, we focused on light propagation and obtained the additional corrections of the gravitational time delay and the relative frequency shift caused by the dark matter. As an application of our results, we considered the secular increase in the astronomical unit reported by Krasinsky and Brumberg (2004) and found that it was difficult to provide an explanation for the observed dAU/dt = 15 ± 4 m/century.  相似文献   

15.
Three-dimensional (3-D) electron density matrices, computed in the Mediterranean area by the IRI climatological model and IRIEup and ISP nowcasting models, during some intense and severe geomagnetic-ionospheric storms, were ingested by the ray tracing software tool IONORT, to synthesize quasi-vertical ionograms. IRIEup model was run in different operational modes: (1) assimilating validated autoscaled electron density profiles only from a limited area which, in our case, is the Mediterranean sector (IRIEup_re(V) mode); (2) assimilating electron density profiles from a larger region including several stations spread across Europe: (a) without taking care of validating the autoscaled data in the assimilation process (IRIEup(NV)); (b) validating carefully the autoscaled electron density profiles before their assimilation (IRIEup(V)).The comparative analysis was carried out comparing IRI, IRIEup_re(V), ISP, IRIEup(NV), and IRIEup(V) foF2 synthesized values, with corresponding foF2 measurements autoscaled by ARTIST, and then validated, at the truth sites of Roquetes (40.80°N, 0.50°E, Spain), San Vito (40.60°N, 17.80°E, Italy), Athens (38.00°N, 23.50°E, Greece), and Nicosia, (35.03°N, 33.16°E, Cyprus). The outcomes demonstrate that: (1) IRIEup_re(V), performs better than ISP in the western Mediterranean (around Roquetes); (2) ISP performs slightly better than IRIEup_re(V) in the central part of Mediterranean (around Athens and San Vito); (3) ISP performance is better than the IRIEup_re(V) one in the eastern Mediterranean (around Nicosia); (4) IRIEup(NV) performance is worse than the IRIEup(V) one; (5) in the central Mediterranean area, IRIEup(V) performance is better than the IRIEup_re(V) one, and it is practically the same for the western and eastern sectors.Concerning the overall performance, nowcasting models proved to be considerably more reliable than the climatological IRI model to represent the ionosphere behaviour during geomagnetic-ionospheric storm conditions; ISP and IRIEup(V) provided the best performance, but neither of them has clearly prevailed over the other one.  相似文献   

16.
A study of the evolution of the periodic and the quasi-periodic orbits near the Lagrangian point L2, which is located to the right of the smaller primary on the line joining the primaries and whose distance from the more massive primary is greater than the distance between the primaries, in the framework of restricted three-body problem for the Sun–Jupiter, Earth–Moon (relatively large mass ratio) and Saturn–Titan (relatively small mass ratio) systems is made. Two families of periodic orbits around the smaller primary are identified using the Poincaré surface of section method – family I (initially elliptical, gradually becomes egg-shaped with the increase in the Jacobi constant C and elongated towards the more massive primary) and family II (initially egg-shaped orbits elongated towards L2 and gradually becomes elliptical with the increase in C). The family I in the Sun–Jupiter and Saturn–Titan systems contains two separatrix caused by third-order and fourth-order resonances, while the Earth–Moon system has only one separatrix which is caused by third-order resonances. Also in the Sun–Jupiter and the Saturn–Titan systems, family I merge with family II, around Jacobian constant 3.0393 and 3.0163, respectively, while in the Earth–Moon system, family II evolves separately from two different branches. The two branches merge at C = 3.184515. In the Earth–Moon system, the family II contains a separatrix due to third-order resonances which is absent in the other two systems.  相似文献   

17.
With the development of lunar exploration, a lunar global positioning system (LGPS) is demanded for both on-ground and in-flight lunar exploration missions. The traditional configuration of constellation requires at least eighteen satellites to cover the whole lunar surface continuously. In this paper, the configurations of the libration point orbits (LPOs) constellations are investigated. By using the constellations on the Earth–Moon L1L1 and L2L2 LPOs, the basic functions of the LGPS can be realized by using eight to fourteen satellites. First, the LPO and the combinations of LPOs, which can be used in the constellations of the LGPS, are investigated. The criteria and procedures of the configuration design are introduced. Second, the configurations of LPOs constellations are investigated in the Earth–Moon circular-restricted three-body problem (CR3BP). The size of the LPOs and the distribution of the satellites on these LPOs are determined by using an exhaustive algorithm and a global optimization method, respectively. The key performance parameters of these constellations are computed. Third, the constellations with good performance in the CR3BP are redesigned in the more accurate Earth–Moon based Sun-perturbed bicircular four-body problem (B4BP). Moreover, in order to avoid the ground coverage problem caused by the perturbation of the Sun, some modifications are implemented, and the configuration of the no blind area LGPS in the B4BP is obtained.  相似文献   

18.
Solar wind data is used to estimate the autocorrelation function for the stochastic process x(τ) = y(t + τ) − y(t), considered as a function of τ, where y(t) is any one of the quantities B2(t), np(t)V2(t), or np(t). This process has stationary increments and a variance that increases like a power law τ2γ where γ is the scaling exponent. For the kinetic energy density and the proton density the scaling exponent is close to the Kolmogorov value γ = 1/3, for the magnetic energy density it is slightly larger. In all three cases, it is shown that the autocorrelation function estimated from the data agrees with the theoretical autocorrelation function for a self-similar stochastic process with stationary increments and finite variance. This is far from proof, but it suggests that these stochastic processes may be self-similar for time scales in the small scale inertial range of the turbulence, that is, from approximately 10 to 103 s.  相似文献   

19.
Vegetable cultivation plays a crucial role in dietary supplements and psychosocial benefits of the crew during manned space flight. Here we developed a ground-based prototype of horn-type sequential vegetable production facility, named Horn-type Producer (HTP), which was capable of simulating the microgravity effect and the continuous cultivation of leaf–vegetables on root modules. The growth chamber of the facility had a volume of 0.12 m3, characterized by a three-stage space expansion with plant growth. The planting surface of 0.154 m2 was comprised of six ring-shaped root modules with a fibrous ion-exchange resin substrate. Root modules were fastened to a central porous tube supplying water, and moved forward with plant growth. The total illuminated crop area of 0.567 m2 was provided by a combination of red and white light emitting diodes on the internal surfaces. In tests with a 24-h photoperiod, the productivity of the HTP at 0.3 kW for lettuce achieved 254.3 g eatable biomass per week. Long-term operation of the HTP did not alter vegetable nutrition composition to any great extent. Furthermore, the efficiency of the HTP, based on the Q-criterion, was 7 × 10−4 g2 m−3 J−1. These results show that the HTP exhibited high productivity, stable quality, and good efficiency in the process of planting lettuce, indicative of an interesting design for space vegetable production.  相似文献   

20.
Higher plants, as one of the essential biological components of CELSS, can supply food, oxygen and water for human crews during future long-duration space missions and Lunar/Mars habitats. In order to select suitable leaf vegetable varieties for our CELSS Experimental Facility (CEF), five varieties of lettuce (“Nenlvnaiyou”, “Dasusheng”, “Naichoutai”, “Dongfangkaixuan” and “Siji”), two of spinach (“Daye” and “Quanneng”), one of rape (“Jingyou No. 1”) and one of common sowthistle were grown and compared on the basis of edible biomass, and nutrient content. In addition, two series of experiments were conducted to study single leaf photosynthetic rates and transpiration rates at 30 days after planting, one which used various concentrations of CO2 (500, 1000, 1500 and 2000 μmol mol−1) and another which used various light intensities (100, 300, 500 and 700 μmol m−2 s−1). Results showed that lettuce cvs. “Nenlvnaiyou”, “Siji” and “Dasusheng” produced higher yields of edible biomass; common sowthisle would be a good source of β-carotene for the diet. Based on the collective findings, we selected three varieties of lettuce (“Nenlvnaiyou”, “Dasusheng” and “Siji”) and one of common sowthistle as the candidate crops for further research in our CEF. In addition, elevated CO2 concentration increased the rates of photosynthesis and transpiration, and elevated light intensity increased the rate of photosynthesis for these varieties. These results can be useful for determining optimal conditions for controlling CO2 and water fluxes between the crops and the overall CELSS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号