首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fifteen solar energetic particle (SEP) events have been analyzed using proton flux data recorded by the Helios 1, Helios 2, and IMP 8 spacecraft in the energy range ∼4–40 MeV during 1974–1982. For each of the events at least two of the spacecraft have their nominal magnetic footpoint within 20° in heliocentric longitude from each other. The SEP events are sub-grouped as a function of their heliocentric longitudinal separation and heliocentric radial distance from the SEP associated solar flare and several case studies are presented in this paper. Main results concerning their usage in estimating the SEP radial dependence are given. Moreover, we investigate the behavior of the third not connected spacecraft in order to study the dependence of the proton flux as a function of flare location. It is found that the contribution of the longitudinal gradient in determining variations in the SEP proton flux is particularly relevant for spacecraft having their magnetic connection footpoint separated from the flare between 30° and 50°.  相似文献   

2.
The interplanetary space is not a passive medium, which merely constitutes a scene for the propagation of previously accelerated energetic particles, but influences the distribution of particles by changing their energies as well due to interactions with magnetic field inhomogeneities. Such processes manifest themselves in the energy spectra of solar energetic particle (SEP) events. In this paper the fluxes of protons with energies of 4–60 MeV are investigated on the basis of two data sets. Both sets are homogeneous, obtained by the CPME instrument aboard the IMP 8 satellite between 1974 and 2001. The first includes all SEP events where the integral fluxes of >4 MeV protons exceeded 2 particle/cm2 s sr. The other set consists of fluxes recorded in differential energy windows between 0.5 and 48 MeV. Important characteristics of SEP events include the rates of decrease of particle flux, which, as well as peak flux time, is an integral feature of the interplanetary medium within a considerable region, surrounding the observation point. The time intervals selected cover the decay phases of SEP events following flares, CMEs and interplanetary shocks of different origin. Only those parts of declines were selected, that could reasonably be described by exponential dependence, irrespective of the gradual/impulsive character of the events. It is shown that the average values of characteristic decay time, τ, and energy spectral index, γ, are all changing with the solar activity phase. Distributions of τ and γ values are obtained in SEPs with and without shocks and during different phases of events: just after peak flux and late after maximum.  相似文献   

3.
The proton telescope aboard the GOES-7 satellite continuously records the proton flux at geosynchronous orbit, and therefore provides a direct measurement of the energetic protons arriving during solar energetic particle (SEP) events. Microelectronic devices are susceptible to single event upset (SEU) caused by both energetic protons and galactic cosmic ray (GCR) ions. Some devices are so sensitive that their upsets can be used as a dosimetric indicator of a high fluence of particles. The 93L422 1K SRAM is one such device. Eight of them are on the TDRS-1 satellite in geosynchronous orbit, and collectively they had been experiencing 1-2 upset/day due to the GCR background. During the large SEP events of 1989 the upset rate increased dramatically, up to about 250 for the week of 19 Oct, due to the arrival of the SEP protons. Using the GOES proton spectra, the proton-induced SEU cross section curve for the 93L422 and the shielding distribution around the 93L422, the calculated upsets based on the GOES satellite data compared well against the log of measured upsets on TDRS-1.  相似文献   

4.
Peak fluxes are an important property of gradual solar energetic particle (SEP) event time profiles from both astro/heliophysical and applications perspectives. However, the peak flux in an event may occur at the event onset, or at the time of the interplanetary shock arrival (the ESP or energetic storm particles). This makes an important difference in the interpretation of the peak flux, and in any attempts to characterize or model it. This paper describes a study of SEP data sets from ACE, IMP-8 and GOES toward determining the relative properties of these peak fluxes for protons with energies near 1, 10, and 50 MeV. The results suggest that for gradual events with both peaks, the ESP peak often dominates at 1 MeV energies and is dominant about half the time at 10 MeV. Moreover, the prompt peak fluxes can be used to estimate the shock peak (ESP event) up to days ahead, especially in the lower energy range.  相似文献   

5.
We have developed an operational code, SOLPENCO, that can be used for space weather prediction schemes of solar energetic particle (SEP) events. SOLPENCO provides proton differential flux and cumulated fluence profiles from the onset of the event up to the arrival of the associated traveling interplanetary shock at the observer’s position (either 1.0 or 0.4 AU). SOLPENCO considers a variety of interplanetary scenarios where the SEP events develop. These scenarios include solar longitudes of the parent solar event ranging from E75 to W90, transit speeds of the associated shock ranging from 400 to 1700 km s−1, proton energies ranging from 0.125 to 64 MeV, and interplanetary conditions for the energetic particle transport characterized by specific mean free paths. We compare the results of SOLPENCO with flux measurements of a set of SEP events observed at 1 AU that fulfill the following four conditions: (1) the association between the interplanetary shock observed at 1 AU and the parent solar event is well established; (2) the heliolongitude of the active region site is within 30° of the Sun–Earth line; (3) the event shows a significant proton flux increase at energies below 96 MeV; (4) the pre-event intensity background is low. The results are discussed in terms of the transit velocity of the shock and the proton energy. We draw conclusions about both the use of SOLPENCO as a prediction tool and the required improvements to make it useful for space weather purposes.  相似文献   

6.
利用SOHO,STEREO高能粒子观测数据,对2011-2014年30个通量短时间内显著增强的缓变型太阳高能粒子(SEP)事件的两个特征时间(局地爆发时间,起始释放时间)及其经向分布进行统计分析.研究结果显示,多颗卫星同时观测到的SEP事件伴随的日冕物质抛射(CME)角宽明显较一般事件大,且基本都为Halo CME;不同卫星观测到的粒子通量局地增强时间差与卫星位置经度差明显线性正相关且东西不对称;局地爆发时间和起始释放时间相对于耀斑时间的延迟与卫星相对经度正相关;卫星所有能量通道的两个特征时间极差与卫星相对经度呈现较好的正相关,这表明不同能量SEP释放的时间跨度具有明显经度差异;高低能释放时间差与CME速度正相关.这些结论表明,SEP事件的两个特征时间具有明显的经向依赖性,并都与CME速度相关.   相似文献   

7.
Energetic particle signatures of geoeffective coronal mass ejections   总被引:1,自引:0,他引:1  
We have studied statistically associations of moderate and intense geomagnetic storms with coronal mass ejections (CMEs) and energetic particle events. The goal was to identify specific energetic particle signatures, which could be used to improve the predictions of the geoeffectiveness of full and partial halo CMEs. Protons in the range 1–110 MeV from the ERNE experiment onboard SOHO are used in the analysis. The study covers the time period from August 1996 to July 2000. We demonstrate the feasibility of energetic particle observations as an additional source of information in evaluating the geoeffectiveness of full and partial halo CMEs. Based on the observed onset times of solar energetic particle (SEP) events and energetic storm particle (ESP) events, we derive a proxy for the transit times of shocks driven by the interplanetary counterparts of coronal mass ejections from the Sun to the Earth. For a limited number of geomagnetic storms which can be associated to both SEP and ESP signatures, we found that this transit time correlates with the strength of geomagnetic storms.  相似文献   

8.
太阳高能粒子事件常伴随太阳耀斑和日冕物质抛射事件(Coronal Mass Ejections,CME)出现,由于太阳高能粒子事件的关键因素是双CME的相互作用,利用SOHO卫星观测的高能粒子强度、耀斑强度以及CME的相对高度与时间,通过高度与时间拟合得到的速度,分析了2001年4月15日和2005年1月20日的太阳高能粒子事件强度与相关双CME事件的关系,发现这两个太阳高能粒子事件中E ≥ 10MeV质子的强度与双CME事件无关.因此在这两次太阳高能粒子事件早期,E ≥ 10MeV质子的强度只与相关太阳耀斑和CME有关.   相似文献   

9.
Solar energetic protons degrade performance and reliability of spacecraft systems due to single-event effects, total dose effects and displacement damage in electronics components including solar cells. On designing a solar cell panel, a total fluence of solar energetic protons (SEPs) which cause solar cell damage is needed to estimate power loss of the solar cells over mission life. Nowadays a solar panel area of spacecraft is increasing as spacecraft mission life becomes longer (15–18 years). Thus an accurate SEP model is strongly required for the cost-minimum design from the aerospace industry. The SEP model, JPL-91 proposed by Feynman et al., is currently used widely for solar cell designing. However, it is known that the JPL-91 model predicts higher fluences of protons than values actually experienced in space, especially after 7 years on orbit. In addition, the model is based on several assumptions, and also needs Monte-Carlo simulations for calculating fluences. In this study, we propose a new method for modeling SEPs especially focused on solar cell degradation. The newly-proposed method is empirical, which constructs a model based directly upon proton flux measurement data taken by instruments onboard spacecraft. This method has neither assumptions nor dependence on SEP event selection, both of which are needed in JPL-91. The model fluences derived from this method show lower fluences in longer missions compared to JPL-91. This method has been proposed to ISO (International Organization for Standardization) and has been discussed for a new standard SEP model.  相似文献   

10.
The shape of the particle flux decline in solar energetic particle (SEP) events is of particular importance in understanding the propagation of energetic particles in the interplanetary medium. Power-law time profiles indicate the dominance of diffusive propagation, whereas exponential-law decline emphasizes convection transport and adiabatic deceleration. Values obtained theoretically for the decay time in the latter case are reasonably close to the fitted slopes in nearly half of all events when the solar wind speed stays nearly constant. Dependencies of characteristic decay time τ and spectral index γ on environmental plasma parameters are considered. Parts of exponential-law declines when solar wind speed: (a) decreases with time, (b) is constant, and (c) increases with time through the interval are analyzed separately. Both average values and dispersions of size distributions of τ for these three groups markedly differ in accordance with theoretical expectations.  相似文献   

11.
We have analysed energetic storm particle (ESP) events in 116 interplanetary (IP) shocks driven by front-side full and partial halo coronal mass ejections (CMEs) with speeds >400 km s?1during the years 1996–2015. We investigated the occurrence and relationships of ESP events with several parameters describing the IP shocks, and the associated CMEs, type II radio bursts, and solar energetic particle (SEP) events. Most of the shocks (57 %) were associated with an ESP event at proton energies >1 MeV.The shock transit speeds from the Sun to 1 AU of the shocks associated with an ESP event were significantly greater than those of the shocks without an ESP event, and best distinguished these two groups of shocks from each other. The occurrence and maximum intensity of the ESP events also had the strongest dependence on the shock transit speed compared to the other parameters investigated. The correlation coefficient between ESP peak intensities and shock transit speeds was highest (0.73 ± 0.04) at 6.2 MeV. Weaker dependences were found on the shock speed at 1 AU, Alfvénic and magnetosonic Mach numbers, shock compression ratio, and CME speed. On average all these parameters were significantly different for shocks capable to accelerate ESPs compared to shocks not associated with ESPs, while the differences in the shock normal angle and in the width and longitude of the CMEs were insignificant.The CME-driven shocks producing energetic decametric–hectometric (DH) type II radio bursts and high-intensity SEP events proved to produce also more frequently ESP events with larger particle flux enhancements than other shocks. Together with the shock transit speed, the characteristics of solar DH type II radio bursts and SEP events play an important role in the occurrence and maximum intensity of ESP events at 1 AU.  相似文献   

12.
Solar energetic particle (SEP) cutoffs at geosynchronous orbit are sensitive to moderate geomagnetic activity and undergo daily variations due to the day–night asymmetry of the magnetosphere. At geosynchronous orbit, cutoff rigidity also has a large directional dependence, with the highest cutoff rigidity corresponding to ions arriving from magnetic east and lowest cutoff rigidity corresponding to ions incident from the west. Consequently, during geomagnetically quiet periods, the SEP flux observed by an eastward facing particle detector is significantly lower than observed by a westward facing particle detector. During geomagnetically disturbed periods the cutoff is suppressed allowing SEPs access well inside of geosynchronous, so that the east–west SEP flux ratio approaches unity. Variations in the east–west SEP flux ratio observed by GOES Energetic Particle Sensors (EPS) have recently been reported by Rodriguez et al. (2010). In NOAA’s operational processing of EPS count rates into differential fluxes, the differential flux is treated as isotropic and flat over the energy width of the channel. To compare modeled SEP flux with GOES EPS observations, the anisotropy of the flux over the EPS energy range and field of view must be taken into account. A technique for making direct comparisons between GOES EPS observations and SEP flux modeled using numerically computed geomagnetic cutoffs is presented. Initial results from a comparison between modeled and observed flux during the 6–11 December 2006 SEP event are also presented. The modeled cutoffs reproduce the observed flux variations well but are in general too high.  相似文献   

13.
The low background values at nighttime of the mesospheric hydroxyl (OH) radical make it easier to single out the atmospheric response to the external solar forcing in Polar Regions. Because of the short lifetime of HOx, it is possible to follow the trails of Solar Energetic Particle (SEP) events in the terrestrial atmosphere, as shown by Storini and Damiani (2008). The sensitivity of this indicator makes discernible not only extreme particle events with a flux peak of several thousand pfu [1 pfu = 1 particle/(cm2 s sr)] at energies >10 MeV, but also those with lower flux up to about 300 pfu. Using data from the Microwave Limb Sounder (MLS) on board the EOS AURA satellite, we examined the correlation of OH abundance vs. solar proton flux for almost all the identified SEP events spanning from November 2004 to December 2006 (later on no more SEP events occurred during Solar Cycle no. 23). The channels at energies greater than 5 MeV and 10 MeV showed the best correlation values (r ∼ 0.90–0.95) at altitudes around 65–75 km whereas, as expected, the most energetic channels were most highly correlated at lower altitudes. Therefore, it is reasonably possible to estimate the solar proton flux from values of mesospheric OH (and viceversa) and it could be useful in studying periods with gaps in the records of solar particles.  相似文献   

14.
A current serious limitation on the studies of solar energetic particle (SEP) events is that their properties in the inner heliosphere are studied only through in situ spacecraft observations. Our understanding of spatial distributions and temporal variations of SEP events has come through statistical studies of many such events over several solar cycles. In contrast, flare SEPs in the solar corona can be imaged through their radiative and collisional interactions with solar fields and particles. We suggest that the heliospheric SEPs may also interact with heliospheric particles and fields to produce signatures which can be remotely observed and imaged. A challenge with any such candidate signature is to separate it from that of flare SEPs. The optimum case for imaging high-energy (E > 100 MeV) heliospheric protons may be the emission of π0-decay γ-rays following proton collisions with solar wind (SW) ions. In the case of E > 1 MeV electrons, gyrosynchrotron radio emission may be the most readily detectible remote signal. In both cases we may already have observed one or two such events. Another radiative signature from nonthermal particles may be resonant transition radiation, which has likely already been observed from solar flare electrons. We discuss energetic neutrons as another possible remote signature, but we rule out γ-ray line and 0.511 MeV positron annihilation emission as observable signatures of heliospheric energetic ions. We are already acquiring global signatures of large inner-heliospheric SW density features and of heliosheath interactions between the SW and interstellar neutral ions. By finding an appropriate observable signature of remote heliospheric SEPs, we could supplement the in situ observations with global maps of energetic SEP events to provide a comprehensive view of SEP events.  相似文献   

15.
The current paradigm for the source of large, gradual solar energetic particle (SEP) events is that theyare accelerated in coronal/interplanetary shocks driven by coronal mass ejections (CMEs). Early studies established that there is a rough correlation between the logs of the CME speed and the logs of the SEP intensities. Here I review two topics challenging the basic paradigm, the recent discovery that CMEs are also associated with impulsive, high-Z rich SEP events and the search for gradual SEP sources other than CME-driven shocks. I then discuss three topics of recent interest dealing with the relationship between the shock or CME properties and the resulting SEP events. These are the roles that CME accelerations, interactions between fast and preceding slow CMEs, and widths of fast CMEs may play in SEP production.  相似文献   

16.
Observations of hard X-ray (HXR)/γ-ray continuum and γ-ray lines produced by energetic electrons and ions, respectively, colliding with the solar atmosphere, have shown that large solar flares can accelerate ions up to many GeV and electrons up to hundreds of MeV. Solar energetic particles (SEPs) are observed by spacecraft near 1 AU and by ground-based instrumentation to extend up to similar energies as in large SEP events, but it appears that a different acceleration process, one associated with fast coronal mass ejections is responsible. Much weaker SEP events are observed that are generally rich in electrons, 3He, and heavy elements. The energetic particles in these events appear to be similar to those accelerated in flares. The Ramaty high energy solar spectroscopic imager (RHESSI) mission provides high-resolution spectroscopy and imaging of flare HXRs and γ-rays. Such observations can provide information on the location, energy spectra, and composition of the flare accelerated energetic particles at the Sun. Here, preliminary comparisons of the RHESSI observations with observations of both energetic electron and ion near 1 AU are reviewed, and the implications for the particle acceleration and escape processes are discussed.  相似文献   

17.
1 AU轨道上太阳高能粒子(Solar Energetic Particles,SEP)通量是空间天气的重要指标.将SEP两步传播方程的格林函数解进行数值化,模拟了2012年9月28日的SEP事件,首次计算了同一事件中GOES卫星与STEREO双星观测到的SEP通量变化过程.对GOES和STEREO-B观测点,计算所得SEP峰值Imax和峰值到达时间tmax与观测值符合较好;对STEREO-A,由于观测点与太阳活动源区间隔较大及太阳背面未知事件的影响,计算结果与观测存在一定差异.   相似文献   

18.
Historically, solar energetic particle (SEP) events are classified in two classes as “impulsive” and “gradual”. Whether there is a clear distinction between the two classes is still a matter of debate, but it is now commonly accepted that in large “gradual” SEP events, Fermi acceleration, also known as diffusive shock acceleration, is the underlying acceleration mechanism. At shock waves driven by coronal mass ejections (CMEs), particles are accelerated diffusively at the shock and often reach > MeV energies (and perhaps up to GeV energies). As a CME-driven shock propagates, expands and weakens, the accelerated particles can escape ahead of the shock into the interplanetary medium. These escaping energized particles then propagate along the interplanetary magnetic field, experiencing only weak scattering from fluctuations in the interplanetary magnetic field (IMF). In this paper, we use a Monte-Carlo approach to study the transport of energetic particles escaping from a CME-driven shock. We present particle spectra observed at 1 AU. We also discuss the particle “crossing number” at 1AU and its implication to particle anisotropy. Based on previous models of particle acceleration at CME-driven shocks, our simulation allows us to investigate various characteristics of energetic particles arriving at various distances from the sun. This provides us an excellent basis for understanding the observations of high-energy particles made at 1 AU by ACE and WIND.  相似文献   

19.
We present a model for composition of heavy ions in the solar energetic particles (SEP). The SEP composition in a typical large solar particle event reflects the composition of the Sun, with adjustments due to fractionation effects which depend on the first ionization potential (FIP) of the ion and on the ratio of ionic charge to mass (Q/M). Flare-to-flare variations in composition are represented by parameters describing these fractionation effects and the distributions of these parameters are presented.  相似文献   

20.
We have investigated the source characteristic and coronal magnetic field structure of six impulsive solar energetic particle (SEP) events selected from Wang et al. [Wang, Y.-M., Pick, M., Mason, G.M. Coronal holes, jets, and the origin of 3He-rich particle events. ApJ 639, 495, 2006] and Pick et al. [Pick, M., Mason, G.M., Wang, Y.-M., Tan, C., Wang, L. Solar source regions for 3He-rich solar energetic particle events identified using imaging radio, optical, and energetic particle observations. ApJ 648, 1247, 2006]. Some results are obtained: first, 2 events are associated with wide (≈100°) CMEs (hereafter wide CME events), another 4 events are associated with narrow (?40°) CMEs (hereafter narrow CME events); second, the coronal magnetic field configuration of narrow CME events appear more simple than that of the wide CME events; third, the photospheric magnetic field evolutions of all these events show new emergence of fluxes, while one case also shows magnetic flux cancellation; fourth, the EUV jets usually occurred very close to the footpoint of the magnetic field loop, while meter type III bursts occurred near or at the top of the loop and higher than EUV jets. Furthermore, the heights of type III bursts are estimated from the result of the coronal magnetic field extrapolations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号