首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates a novel finite-time attitude control method for the postcapture spacecraft with an unknown captured space target in the presence of input faults and quantization. First, a quasi fixed-time convergent performance function is developed to quantitatively characterize the attitude tracking performance. Then, a backstepping prescribed performance attitude controller is devised via using integral barrier Lyapunov function. Compared with the existing works, the fractional state feedback and discontinuous controller is directly avoided to achieve the fixed-time convergence rate. Namely, the proposed fixed-time controller is easily achieved online. Finally, two groups of illustrative examples are organized to validate the effectiveness and robustness of the proposed control method.  相似文献   

2.
The guaranteed performance control problem of spacecraft attitude tracking with control constraint, disturbance and time-varying inertia parameters is investigated. A new saturation function is designed to satisfy different magnitude constraints by introducing a piecewise smooth asymmetric Gauss error function. Based on the mean-value theorem, the constrained problem is transformed into an unconstrained control design subject to an unknown bounded coefficient matrix. To satisfy the constraints by performance functions, a tracking error constrained control is developed based on a hyperbolic arc-tangent asymmetric barrier Lyapunov function (BLF). In the backstepping framework, an adaptive robust control law is proposed by employing a smooth robust term simultaneously counteracting the parametric and non-parametric uncertainties, where the unknown coefficient matrix resulting from the control constraint is compensated by a Nussbaum function matrix. Rigorous stability analysis indicates that the proposed control law realizes the asymptotically tracking of spacecraft attitude and that the tracking error remains in a prescribed set which implies the achievement of the guaranteed transient performance. Numerical simulations validate the proposed theoretical results.  相似文献   

3.
The problem of spacecraft attitude stabilization control system with limited communication and external disturbances is investigated based on an event-triggered control scheme. In the proposed scheme, information of attitude and control torque only need to be transmitted at some discrete triggered times when a defined measurement error exceeds a state-dependent threshold. The proposed control scheme not only guarantees that spacecraft attitude control errors converge toward a small invariant set containing the origin, but also ensures that there is no accumulation of triggering instants. The performance of the proposed control scheme is demonstrated through numerical simulation.  相似文献   

4.
A nonlinear control technique pertaining to attitude synchronization problems is presented for formation flying spacecraft by utilizing the State-Dependent Riccati Equation (SDRE) technique. An attitude controller consisting of relative control and absolute control is designed using a reaction wheel assembly for regulator and tracking problems. To achieve effective relative control, the selective state-dependent connectivity is also adopted. The global asymptotic stability of the controller is confirmed using the Lyapunov theorem and is verified by Monte-Carlo simulations. An air-bearing-based Hardware-In-the-Loop Simulator (HILS) is also developed to validate the proposed control laws in real-time environments. The SDRE controller is discretized for implementation of a real-time processor in the HILS. The pointing errors are about 0.2° in the numerical simulations and about 1° in the HILS simulations, and experimental simulations confirm the effectiveness of the control algorithm for attitude synchronization in a spacecraft formation flying mission. Consequently, experiments using the HILS in a real-time environment can appropriately perform spacecraft attitude synchronization algorithms for formation flying spacecraft.  相似文献   

5.
针对超静卫星星体平台无陀螺、载荷敏感器与星体平台执行机构非共基准安装时整星存在姿态异位控制问题,提出了一种基于观测器估计星体平台姿态的复合控制方法。首先,建立星体平台/Stewart平台/载荷的动力学模型,并获得Stewart平台作动器关节空间的等效动力学模型。针对关节空间等效模型,设计super twisting观测器,以作动器平动位移为输入,以载荷和星体平台之间的相对姿态和角速度为输出,实现星体平台姿态和角速度估计。其次,以载荷测量姿态信息为输入,设计Stewart作动器的积分滑模控制律,实现载荷高精度指向控制。以观测器估计的星体平台姿态信息为输入,设计星体平台控制器实现星体平台的稳定控制。Lyapunov稳定性分析表明所设计的观测器和控制器能够保证闭环系统渐近稳定。数学仿真结果表明:在星体平台有陀螺时,载荷能够实现0.1″指向精度;在星体平台无陀螺时,采用观测器估计星体平台姿态并进行控制,载荷亦可实现0.1″指向精度。  相似文献   

6.
The problem of attitude takeover control of spacecraft by using cellular satellites with limited communication, actuator faults and input saturation is investigated. In order to lighten the communication burden of cellular satellites, an event-triggered control strategy is adopted. The filtered attitude information needs to be transmitted only when the defined measurement error reaches the event-triggered threshold in this strategy. Then, to deal with the unknown inertia matrix, actuator faults, external disturbances and the errors caused by event-triggered scheme, fuzzy logic systems is introduced to estimate the uncertainties directly. Combining fuzzy logic control strategy and the event-triggered method, the first event-triggered adaptive fuzzy control law is developed. Then, torque saturation of cellular satellites is further considered in the second control law, where the upper bound of the uncertainties is estimated by fuzzy logic systems. The resulting closed-loop systems under the two control laws are guaranteed to be bounded. Finally, the effectiveness of two proposed control laws is verified by the numerical simulations.  相似文献   

7.
A saturated fault-tolerant attitude tracking controller for disturbed rigid spacecraft is derived using nonlinear state feedback control method. The proposed controller achieves the constraints of control inputs by directly using the bounded function instead of the traditional saturation compensator technique, and the active tolerance to the partial loss of actuator effectiveness is also achieved by directly using the known bounds of the actuator faults in the controller. Specifically, compared with the traditional saturated control methods, a continuously bounded nonlinear function in the proposed controller is used to guarantee that the actuator outputs are smoothly bounded under the prescribed constraints. Based on some properties of the attitude tracking dynamics, the proposed controller can ensure the attitude tracking errors converge to small neighborhoods of zero via stability analysis in the Lyapunov framework. Simulation results are presented to illustrate the effectiveness of the control scheme.  相似文献   

8.
This paper addresses the attitude tracking control for spacecraft formation with delay free and communication delays. With help of the idea of sliding control, an adaptive attitude synchronization control architecture is established. Furthermore, by introducing a nonsmooth feedback function, a new class of nonlinear controllers for the attitude tracking of spacecraft is developed. Both parameter uncertainties and unknown external disturbances are dealt with via the kind of controllers. Finally, some simulation results are given to demonstrate the effectiveness and advantages of the proposed results.  相似文献   

9.
An event-triggered control strategy based on extended state observer (ESO) is proposed for the attitude tracking problem of small plug-and-play spacecraft with uncertain inertia parameters, external disturbances, and actuator faults. A simplified controller is developed based on the angular velocity and the general disturbances estimated by the provided ESO using the information of the system inputs and the angular velocities. In the designed event-triggered sampling mechanism, a state-dependent event-triggered strategy determines the triggering instant of the controller to reduce the frequency of information transmission between the controller and the actuator. In comparison with the previous literature, this paper considers uncertain inertia parameters, external disturbances, and actuator faults as general disturbances estimated by ESO, especially for the actuator faults. The inputs of ESO are the error of the angular velocities, which can simplify the controller design. Moreover, the designed ESO can effectively attenuate the influence of measured noises generated by the gyroscopes. The proposed event-triggered policy balances the performance of event-triggering and the control stability performance, which reduces the final state convergence regions without increasing more triggering times compared to existing studies. Furthermore, the investigated policy achieves Zeno-free triggering. Numerical simulations verify theoretical results.  相似文献   

10.
为了完成挠性航天器高精度姿态控制任务,首先采用摄动法分析了挠性航天器动力学方程,得到相应的0阶和1阶动力学系统.针对0阶非线性时不变系统,同时考虑到转动惯量不确定性和干扰,对已有的非线性直接自适应控制律进行改进,设计PI(Propor-tional-Integral)型参数自适应律,以提高姿态控制精度,同时给出了稳定性证明.针对1阶系统设计PI控制器及PPF(Positive Position Feedback)控制器,以有效抑制挠性结构振动.仿真结果表明,在采用摄动法对动力学方程分析的基础上设计姿态控制系统,可以有效完成挠性航天器高精度姿态控制任务.  相似文献   

11.
针对多颗微小卫星接管控制失效航天器姿态运动的问题,提出了一种基于多颗微小卫星合作博弈实现对失效航天器姿态接管控制的方法。首先,面向失效航天器姿态接管控制任务需求,设计了各颗微小卫星的局部目标函数,并在考虑多颗微小卫星与失效航天器所形成组合体的动力学约束、微小卫星控制约束的情况下,建立了多颗微小卫星的合作博弈模型。其次,为实现失效航天器对时变期望姿态轨迹的跟踪,在合理设计期望姿态轨迹的基础上,通过构建组合体增广姿态运动方程,将跟踪期望姿态轨迹的要求描述为微小卫星合作博弈控制问题中的一组约束,并建立了多颗微小卫星控制失效航天器跟踪时变轨迹的合作博弈帕累托最优策略的求解框架。最后,对微小卫星合作博弈控制方法的有效性进行仿真验证,结果表明:该方法能够在不需要进行微小卫星控制分配的情况下,通过多颗微小卫星的合作博弈实现对失效航天器的姿态接管控制。与传统方法相比,这种控制方法可避免进行微小卫星之间的控制分配,能够实现微小卫星能量消耗的全局最优且设计简单便于考虑微小卫星的控制约束。  相似文献   

12.
针对传统航天姿控系统故障诊断与容错控制诊断精度及控制分配效率较低的问题,提出了一种基于深度神经网络的航天器姿态控制系统故障诊断与容错控制方法。以控制力矩陀螺为执行机构的航天器发生执行机构故障工况时,所提出的方法可保证鲁棒的姿态控制。首先,利用三个异构深度神经网络实现传统容错控制器的故障诊断、姿态控制和力矩分配等功能,建立了全神经网络的智能自适应容错控制器架构。然后,对三个神经网络的网络层数、神经元数目和激活函数等参数进行优化调整,对比分析了神经网络参数对控制器性能的影响。最后,对所提出的新型控制器在控制力矩陀螺发生故障时的控制精度和鲁棒性进行了仿真验证。仿真结果表明,对于具有冗余控制力矩陀螺的航天器,提出的方法不仅能在单一陀螺故障下实现高精度的容错控制,也能在发生多陀螺故障时保证一定的姿态稳定控制。  相似文献   

13.
基于滑模控制与自适应理论,对使用单框架控制力矩陀螺群(SGCMGs)的刚性航天器的被动姿态容错控制问题进行了研究。首先建立了含有陀螺框架转速故障的系统数学模型。然后将框架转速直接作为控制量并应用滑模控制理论设计了容错控制器,同时控制器中还设计了自适应律对故障信息和干扰进行估计。由此,可在故障和干扰的先验信息未知的情况下,实现对航天器无故障和有故障情况下的姿态稳定控制,且具有较强的鲁棒性。最后,对2种构型单框架控制力矩陀螺群的不同故障模式进行数学仿真,验证了该控制方法的有效性和可行性。  相似文献   

14.
15.
Interplanetary spacecraft navigation using pulsars   总被引:1,自引:0,他引:1  
We demonstrate how observations of pulsars can be used to help navigate a spacecraft travelling in the solar system. We make use of archival observations of millisecond pulsars from the Parkes radio telescope in order to demonstrate the effectiveness of the method and highlight issues, such as pulsar spin irregularities, which need to be accounted for. We show that observations of four millisecond pulsars every seven days using a realistic X-ray telescope on the spacecraft throughout a journey from Earth to Mars can lead to position determinations better than ∼20 km and velocity measurements with a precision of ∼0.1 ms−1.  相似文献   

16.
This paper studies deorbiting using an analogue to the quasi-rhombic-pyramid concept for planar motion. The focus is on maintaining a stable (meaning oscillatory) attitude close to the direction of the velocity of the spacecraft relative to the atmosphere. The study consists of a massive computation of deorbit times chosen in a region of the phase space where atmospheric drag plays a leading role. Here, no damping effects are considered. Thus, any passive stabilisation observed is either due to solar radiation pressure or atmospheric drag. The results show that such stable deorbiting is feasible up to a threshold that depends upon the physical parameters of the sail. This threshold is around 500 km of altitude. Stable deorbiting is also shown to reduce the unpredictability that appears due to tumbling.  相似文献   

17.
近地航天器测控设备分配策略   总被引:1,自引:0,他引:1  
对多个近地航天器同时在轨运行时,如何分配地面有限的测控设备以完成各航天器的测控任务提出了一种分配策略,并编写了相应的软件进行试算,取得了满意的结果。  相似文献   

18.
Due to the presence of periodic forcing terms in the gravity gradient torque, orbit eccentricity may produce large response for the roll, yaw and pitch angles. This paper investigates the influence of the orbit eccentricity on the performance of the attitude determination and control subsystem (ADCS) pointing of passive Low Earth Orbit (LEO) satellites stabilized by a gravity gradient boom or having long appendages before and after the deorbiting operation. The contribution of this work is twofold. First, the satellite attitude dynamics and kinematics are modeled by introducing the orbit eccentricity in the equations of motion of a LEO satellite in order to provide the best scenario in which satellite operators can keep the nominal functionality of LEO satellites with a gravity gradient boom after the deorbiting operation. Second, a Quaternion-based Extended Kalman Filter (EKF) is analyzed when the orbit eccentricity is considered in order to determine the influence of this disturbance on the convergence and stability of the filter. The simulations in this work are based on the true parameters of Alsat-1 which is a typical LEO satellite stabilized by a gravity gradient boom. The results show that the orbit eccentricity has a big influence on the pointing system accuracy causing micro-vibrations that affect the geocentric pointing particularly after the deorbiting phase. In this case, satellites have no orbital correction option. The Quaternion-based Extended Kalman Filter analyzed in this paper, achieved satisfactory results for eccentricity values less than 0.4 with respect to pointing system accuracy. However, singularities were observed for eccentricity values greater than 0.4.  相似文献   

19.
In this study, different geomagnetic field models are compared in order to study the errors resulting from the representation of magnetic fields that affect the satellite attitude system. For this purpose, we used magnetometer data from two Low Earth Orbit (LEO) spacecraft and the geomagnetic models IGRF-12 (Thébault et al., 2015) and T89 (Tsyganenko, 1989) models to study the differences between the magnetic field components, strength and the angle between the predicted and observed vector magnetic fields. The comparisons were made during geomagnetically active and quiet days to see the effects of the geomagnetic storms and sub-storms on the predicted and observed magnetic fields and angles. The angles, in turn, are used to estimate the spacecraft attitude and hence, the differences between model and observations as well as between two models become important to determine and reduce the errors associated with the models under different space environment conditions. We show that the models differ from the observations even during the geomagnetically quiet times but the associated errors during the geomagnetically active times increase. We find that the T89 model gives closer predictions to the observations, especially during active times and the errors are smaller compared to the IGRF-12 model. The magnitude of the error in the angle under both environmental conditions was found to be less than 1°. For the first time, the geomagnetic models were used to address the effects of the near Earth space environment on the satellite attitude.  相似文献   

20.
针对卫星在执行丢弃载荷或捕获目标等复杂任务时遭遇的姿态突然发生变化的问题,采用深度增强学习方法对卫星姿态进行控制,使卫星恢复稳定状态。具体来说,首先搭建飞行器的姿态动力学环境,并将连续的控制力矩输出离散化,然后采用Deep Q Network算法进行卫星自主姿态控制训练,以姿态角速度趋于稳定作为奖励获得离散行为的最优智能输出。仿真试验表明,面向空间卫星姿态控制的深度增强学习算法能够在卫星受到突发随机扰动后稳定卫星姿态,并能有效解决传统PD控制器依赖被控对象质量参数的难题。所提出的方法采用自主学习的方式对卫星姿态进行控制,具有很强的智能性和一定的普适性,在未来卫星执行复杂空间任务中的智能控制方面有着很好的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号