共查询到20条相似文献,搜索用时 15 毫秒
1.
John H. Heinbockel Tony C. Slaba Steve R. Blattnig Ram K. Tripathi Lawrence W. Townsend Thomas Handler Tony A. Gabriel Lawrence S. Pinsky Brandon Reddell Martha S. Clowdsley Robert C. Singleterry John W. Norbury Francis F. Badavi Sukesh K. Aghara 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The protection of astronauts and instrumentation from galactic cosmic rays and solar particle events is one of the primary constraints associated with mission planning in low earth orbit or deep space. To help satisfy this constraint, several computational tools have been developed to analyze the effectiveness of various shielding materials and structures exposed to space radiation. These tools are now being carefully scrutinized through a systematic effort of verification, validation, and uncertainty quantification. In this benchmark study, the deterministic transport code HZETRN is compared to the Monte Carlo transport codes HETC-HEDS and FLUKA for a 30 g/cm2 water target protected by a 20 g/cm2 aluminum shield exposed to a parameterization of the February 1956 solar particle event. Neutron and proton fluences as well as dose and dose equivalent are compared at various depths in the water target. The regions of agreement and disagreement between the three codes are quantified and discussed, and recommendations for future work are given. 相似文献
2.
Steven A. Walker Lawrence W. Townsend John W. Norbury 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Estimates of organ dose equivalents for the skin, eye lens, blood forming organs, central nervous system, and heart of female astronauts from exposures to the 1977 solar minimum galactic cosmic radiation spectrum for various shielding geometries involving simple spheres and locations within the Space Transportation System (space shuttle) and the International Space Station (ISS) are made using the HZETRN 2010 space radiation transport code. The dose equivalent contributions are broken down by charge groups in order to better understand the sources of the exposures to these organs. For thin shields, contributions from ions heavier than alpha particles comprise at least half of the organ dose equivalent. For thick shields, such as the ISS locations, heavy ions contribute less than 30% and in some cases less than 10% of the organ dose equivalent. Secondary neutron production contributions in thick shields also tend to be as large, or larger, than the heavy ion contributions to the organ dose equivalents. 相似文献
3.
H.S. Ahluwalia 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
We have searched for a correlation between galactic cosmic rays (GCRs) and global earth surface air temperature (GST) datasets going back to the year 1900. The linear correlation coefficient between GCRs and GST varies erratically, exhibiting both positive and negative values over time scales varying from about 5–20 years. Since the finding of no persistent correlation is not supported by predictive theory but is what one should expect for two random, un-correlated time series, we infer that GCRs do not influence global surface air temperature. 相似文献
4.
O.G. Morales-Olivares R.A. Caballero-Lopez 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Our understanding of galactic cosmic ray (GCR) modulation has advanced greatly in the last three decades. However, we still need an appropriate knowledge of the GCR intensity gradient. Numerical simulations of the transport particle equation allow interpretation of cosmic ray intensities in the heliosphere. We use the numerical solution of the GCR transport equation during solar maximum epoch to compute the radial and latitudinal gradients. Our analysis indicates that adiabatic energy loss plays an important role in the radial distribution of GCR in the inner heliosphere, while in the outer region the diffusion and convection are the relevant processes. The latitudinal gradient is small. 相似文献
5.
Tony C. Slaba Steve R. Blattnig Brandon Reddell Amir Bahadori Ryan B. Norman Francis F. Badavi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Recent work has indicated that pion production and the associated electromagnetic (EM) cascade may be an important contribution to the total astronaut exposure in space. Recent extensions to the deterministic space radiation transport code, HZETRN, allow the production and transport of pions, muons, electrons, positrons, and photons. In this paper, the extended code is compared to the Monte Carlo codes, Geant4, PHITS, and FLUKA, in slab geometries exposed to galactic cosmic ray (GCR) boundary conditions. While improvements in the HZETRN transport formalism for the new particles are needed, it is shown that reasonable agreement on dose is found at larger shielding thicknesses commonly found on the International Space Station (ISS). Finally, the extended code is compared to ISS data on a minute-by-minute basis over a seven day period in 2001. The impact of pion/EM production on exposure estimates and validation results is clearly shown. The Badhwar–O’Neill (BO) 2004 and 2010 models are used to generate the GCR boundary condition at each time-step allowing the impact of environmental model improvements on validation results to be quantified as well. It is found that the updated BO2010 model noticeably reduces overall exposure estimates from the BO2004 model, and the additional production mechanisms in HZETRN provide some compensation. It is shown that the overestimates provided by the BO2004 GCR model in previous validation studies led to deflated uncertainty estimates for environmental, physics, and transport models, and allowed an important physical interaction (π/EM) to be overlooked in model development. Despite the additional π/EM production mechanisms in HZETRN, a systematic under-prediction of total dose is observed in comparison to Monte Carlo results and measured data. 相似文献
6.
Comparisons of several transport models in their predictions in typical space radiation environments 总被引:1,自引:0,他引:1
Z.W. Lin J.H. Adams Jr. A.F. Barghouty S.D. Randeniya R.K. Tripathi J.W. Watts P.P. Yepes 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
We have used several transport codes to calculate dose and dose equivalent values as well as the particle spectra behind a slab or inside a spherical shell shielding in typical space radiation environments. Two deterministic codes, HZETRN and UPROP, and two Monte Carlo codes, FLUKA and Geant4, are included. A soft solar particle event, a hard solar particle event, and a solar minimum galactic cosmic rays environment are considered; and the shielding material is either aluminum or polyethylene. We find that the dose values and particle spectra from HZETRN are in general rather consistent with Geant4 except for neutrons. The dose equivalent values from HZETRN and Geant4 are not far from each other, but the HZETRN values behind shielding are often lower than the Geant4 values. Results from FLUKA and Geant4 are mostly consistent for considered cases. However, results from the legacy code UPROP are often quite different from the other transport codes, partly due to its non-consideration of neutrons. Comparisons for the spherical shell geometry exhibit the same qualitative features as for the slab geometry. In addition, results from both deterministic and Monte Carlo transport codes show that the dose equivalent inside the spherical shell decreases from the center to the inner surface and this decrease is large for solar particle events; consistent with an earlier study based on deterministic radiation transport results. This study demonstrates both the consistency and inconsistency among these transport models in their typical space radiation predictions; further studies will be required to pinpoint the exact physics modules in these models that cause the differences and thus may be improved. 相似文献
7.
V. Rusov A. Glushkov N. Loboda O. Khetselius V. Khokhlov A. Svinarenko G. Prepelitsa 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,42(9):1614-1617
The spectrum of turbulent pulsations induced in the atmosphere by the galactic cosmic rays is defined. A possible manifestation of genesis of fractal dimensions in the system of “spectrum of turbulent pulsations of cosmic plasma – galactic cosmic rays’ spectrum – spectrum of atmospheric turbulent pulsations” is analyzed. 相似文献
8.
T.C. Slaba S.R. Blattnig M.S. Clowdsley S.A. Walker F.F. Badavi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Long-term human presence in space requires the inclusion of radiation constraints in mission planning and the design of shielding materials, structures and vehicles. It is necessary to expose the numerical tools commonly used in radiation analyses to extensive verification, validation and uncertainty quantification. In this paper, the numerical error associated with energy discretization in HZETRN is addressed. An inadequate numerical integration scheme in the transport algorithm is shown to produce large errors in the low energy portion of the neutron and light ion fluence spectra. It is further shown that the errors result from the narrow energy domain of the neutron elastic cross section spectral distributions and that an extremely fine energy grid is required to resolve the problem under the current formulation. Since adding a sufficient number of energy points will render the code computationally inefficient, we revisit the light ion and neutron transport theory developed for HZETRN and focus on neutron elastic interactions. Two numerical methods (average value and collocation) are developed to provide adequate resolution in the energy domain and more accurately resolve the neutron elastic interactions. An energy grid convergence study is conducted to demonstrate the improved stability of the new methods. Based on the results of the convergence study and the ease of implementation, the average value method with a 100 point energy grid is found to be suitable for future use in HZETRN. 相似文献
9.
航天员受银河宇宙线辐射的剂量计算 总被引:1,自引:0,他引:1
在近地空间(LEO)和深空探测中,航天员遭受的辐射风险主要来自于银河宇宙线(GCR)照射.银河宇宙线的辐射剂量是航天员辐射风险评价的基础.国际放射防护委员会(ICRP)于2013年提出了新的航天员空间辐射剂量估算方法,以更准确给出空间重离子辐射的剂量.基于此方法,开发了宇宙线粒子在物质中输运的蒙特卡罗程序,并在程序中实现用中国成年男性人体数字模型来仿真航天员.采用该程序计算了粒子(Z=1~92)各向同性照射航天员时器官的通量-器官剂量转换因数,并估算出航天员在近地轨道空间受银河宇宙线辐射的剂量. 相似文献
10.
M. Poje B. Vuković M. Varga V. Radolić I. Miklavčić D. Faj J. Planinić 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
Cosmic radiation bombards us at high altitude with ionizing particles; the radiation has a galactic component, which is normally dominant, and a component of solar origin. Cosmic ray particles are the primary source of ionization in the atmosphere above 1 km; below 1 km radon is a dominant source of ionization in many areas. 相似文献
11.
12.
M.B. Krainev G.A. Bazilevskaya 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(12):2124-2128
Two phenomena connected with the maximum phase of the 11-year solar cycle in the galactic cosmic ray intensity – the change in the energy dependence of the intensity variations and the double-peak structure in the intensity modulation time profile – are considered for the last five solar cycles (Nos. 19–23). The distinct 22-year cycle in the magnitude of the so called energy hysteresis is observed.The periods of the solar cycle maximum phase in the galactic cosmic ray intensity, characterized by the specific energy dependence of the intensity, are estimated. It is found that the double-peak structures belonging to the solar cycle maximum phase and those around it are very similar both in the amplitude and in its energy dependence. 相似文献
13.
R.B. Norman T.C. Slaba S.R. Blattnig 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Safe and efficient mission operations in space require an accurate understanding of the physical interactions of space radiation. As the primary space radiation interacts with intervening materials, the composition and spectrum of the radiation environment changes. The production of secondary particles can make a significant contribution to radiation exposure. In this work, the NASA space radiation transport code, HZETRN, is extended to include the transport of electrons, positrons, and photons. The production of these particles is coupled to the initial cosmic ray radiation environment through the decay of neutral pions, which produce high energy photons, and through the decay of muons, which produce electrons and positrons. The photons, electrons, and positrons interact with materials producing more photons, electrons and positrons generating an electromagnetic cascade. The relevant cross sections, transport equation, and solution method are introduced. Electron and positron production in Earth’s atmosphere is investigated and compared to experimental balloon-flight measurements. Reasonable agreement is seen between HZETRN and data. 相似文献
14.
S. Veretenenko M. Ogurtsov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
In this work we studied the spatial and temporal structure of long-term effects of solar activity (SA) and galactic cosmic ray (GCR) variations on the lower atmosphere circulation as well as possible reasons for the peculiarities of this structure. The study revealed a strong latitudinal and regional dependence of SA/GCR effects on pressure variations in the lower troposphere which seems to be determined by specific features of baric systems formed in different regions. The temporal structure of SA/GCR effects on the troposphere circulation at high and middle latitudes is characterized by a roughly 60-year periodicity which is apparently due to the epochs of the large-scale atmospheric circulation. It is suggested that a possible mechanism of long-term effects of solar activity and cosmic ray variations on the troposphere circulation involves changes in the evolution of the polar vortex in the stratosphere of high latitudes, as well as planetary frontal zones. 相似文献
15.
O.G. Morales-Olivares R.A. Caballero-Lopez 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
In this paper we analyze the spatial distribution of galactic cosmic rays during periods of maximum solar activity of the cycles 21, 22 and 23. We have used a two dimensional model to solve the cosmic ray transport equation. This model includes all relevant physical processes: diffusion, convection, drift and shock effects on cosmic ray propagation inside the heliosphere. We focused on the study of the radial distribution of galactic cosmic rays, and compare our results with the spacecraft observations for two energies (175 MeV H and 265 MeV/n He). Although the radial intensities of galactic cosmic rays can be explained qualitatively with all three local interstellar spectra (LISs) used in this work, we applied a reduced chi-squared analysis to investigate the best LIS that could fit the data. 相似文献
16.
H.S. Ahluwalia R.C. Ygbuhay 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The annual mean sunspot number (SSN) has a minimum value in 2008, while the monthly mean SSN has a value of zero in August 2009. The galactic cosmic ray modulation for cycle 24 began at earth orbit in January 2010. We study the onset characteristics of the new modulation cycle using data from the global network of neutron monitors. They respond to time variations in different segments of the galactic cosmic ray rigidity spectrum. The corresponding temporal variations in the interplanetary magnetic field intensity (B) and solar wind velocity (V) as well as the tilt angle of the heliospheric current sheet are also studied. There is a lag of 3 months between a large, sharp increase of the tilt angle of the heliospheric current sheet and the onset of modulation. Some neutron monitors are undergoing long-term drifts of unknown origin. 相似文献
17.
S. Veretenenko M. Ogurtsov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Possible reasons for the temporal instability of long-term effects of solar activity (SA) and galactic cosmic ray (GCR) variations on the lower atmosphere circulation were studied. It was shown that the detected earlier ∼60-year oscillations of the amplitude and sign of SA/GCR effects on the troposphere pressure at high and middle latitudes (Veretenenko and Ogurtsov, Adv.Space Res., 2012) are closely related to the state of a cyclonic vortex forming in the polar stratosphere. The intensity of the vortex was found to reveal a roughly 60-year periodicity affecting the evolution of the large-scale atmospheric circulation and the character of SA/GCR effects. An intensification of both Arctic anticyclones and mid-latitudinal cyclones associated with an increase of GCR fluxes at minima of the 11-year solar cycles is observed in the epochs of a strong polar vortex. In the epochs of a weak polar vortex SA/GCR effects on the development of baric systems at middle and high latitudes were found to change the sign. The results obtained provide evidence that the mechanism of solar activity and cosmic ray influences on the lower atmosphere circulation involves changes in the evolution of the stratospheric polar vortex. 相似文献
18.
19.
Tony C. Slaba Steve R. Blattnig Francis F. Badavi Nicholas N. Stoffle Robert D. Rutledge Kerry T. Lee E. Neal Zapp Tsvetan P. Dachev Borislav T. Tomov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Measurements taken in Low Earth Orbit (LEO) onboard the International Space Station (ISS) and transit vehicles have been extensively used to validate radiation transport models. Primarily, such comparisons were done by integrating measured data over mission or trajectory segments so that individual comparisons to model results could be made. This approach has yielded considerable information but is limited in its ability to rigorously quantify and differentiate specific model errors or uncertainties. Further, as exploration moves beyond LEO and measured data become sparse, the uncertainty estimates derived from these validation cases will no longer be applicable. Recent improvements in the underlying numerical methods used in HZETRN have resulted in significant decreases in code run time. Therefore, the large number of comparisons required to express error as a function of a physical quantity, like cutoff rigidity, are now possible. Validation can be looked at in detail over any portion of a flight trajectory (e.g. minute by minute) such that a statistically significant number of comparisons can be made. This more rigorous approach to code validation will allow the errors caused by uncertainties in the geometry models, environmental models, and nuclear physics models to be differentiated and quantified. It will also give much better guidance for future model development. More importantly, it will allow a quantitative means of extrapolating uncertainties in LEO to free space. In this work, measured data taken onboard the ISS during solar maximum are compared to results obtained with the particle transport code HZETRN. Comparisons are made at a large number (∼77,000) of discrete time intervals, allowing error estimates to be given as a function of cutoff rigidity. It is shown that HZETRN systematically underestimates exposure quantities at high cutoff rigidity. The errors are likely associated with increased angular variation in the geomagnetic field near the equator, the lack of pion production in HZETRN, and errors in high energy nuclear physics models, and will be the focus of future work. 相似文献