首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The occurrence of waves generated by pick-up of planetary neutrals by the solar wind around unmagnetized planets is an important indicator for the composition and evolution of planetary atmospheres. For Venus and Mars, long-term observations of the upstream magnetic field are now available and proton cyclotron waves have been reported by several spacecraft. Observations of these left-hand polarized waves at the local proton cyclotron frequency in the spacecraft frame are reviewed for their specific properties, generation mechanisms and consequences for the planetary exosphere. Comparison of the reported observations leads to a similar general wave occurrence at both planets, at comparable locations with respect to the planet. However, the waves at Mars are observed more frequently and for long durations of several hours; the cyclotron wave properties are more pronounced, with larger amplitudes, stronger left-hand polarization and higher coherence than at Venus. The geometrical configuration of the interplanetary magnetic field with respect to the solar wind velocity and the relative density of upstream pick-up protons to the background plasma are important parameters for wave generation. At Venus, where the relative exospheric pick-up ion density is low, wave generation was found to mainly take place under stable and quasi-parallel conditions of the magnetic field and the solar wind velocity. This is in agreement with theory, which predicts fast wave growth from the ion/ion beam instability under quasi-parallel conditions already for low relative pick-up ion density. At Mars, where the relative exospheric pick-up ion density is higher, upstream wave generation may also take place under stable conditions when the solar wind velocity and magnetic field are quasi-perpendicular. At both planets, the altitudes where upstream proton cyclotron waves were observed (8 Venus and 11 Mars radii) are comparable in terms of the bow shock nose distance of the planet, i.e. in terms of the size of the solar wind-planetary atmosphere interaction region. In summary, the upstream proton cyclotron wave observations demonstrate the strong similarity in the interaction of the outer exosphere of these unmagnetized planets with the solar wind upstream of the planetary bow shock.  相似文献   

2.
We propose a new phase-mixing sweep model of coronal heating and solar wind acceleration based on dissipative properties of kinetic Alfvén waves (KAWs). The energy reservoir is provided by the intermittent ∼1 Hz MHD Alfvén waves excited at the coronal base by magnetic restructuring. These waves propagate upward along open magnetic field lines, phase-mix, and gradually develop short wavelengths across the magnetic field. Eventually, at 1.5–4 solar radii they are transformed into KAWs. We analyze several basic mechanisms for anisotropic energization of plasma species by KAWs and find them compatible with observations. In particular, UVCS (onboard SOHO) observations of intense cross-field ion energization at 1.5–4 solar radii can be naturally explained by non-adiabatic ion acceleration in the vicinity of demagnetizing KAW phases. The ion cyclotron motion is destroyed there by electric and magnetic fields of KAWs.  相似文献   

3.
Cool giant and supergiant stars generally present low velocity winds with high mass-loss rates. Several models have been proposed to explain the acceleration process of these winds. Although dust is known to be present in these objects, the radiation pressure on these particles is uneffective in reproducing the observed physical parameters of the wind. The most promising acceleration mechanism cited in the literature is the transference of momentum and energy from Alfvén waves to the gas. Usually, these models consider the wind to be isothermal. We present a stellar wind model in which the Alfvén waves are used as the main acceleration mechanism, and determine the temperature profile by solving the energy equation taking into account both the radiative losses and the wave heating. We also determine, self-consistently, the magnetic field geometry as the result of the competition between the magnetic field and the thermal pressure gradient. As the main result, we show that the magnetic geometry presents a super-radial index in the region where the gas pressure is increasing. However, this super-radial index is greater than that observed for the solar corona.  相似文献   

4.
5.
We outline a theory for the origin and acceleration of the fast solar wind as a consequence of network microflares releasing a spectrum of high frequency Alfvén waves which heat (by cyclotron absorption) the corona close to the Sun. The significant features of our model of the fast wind are that the acceleration is rapid with the sonic point at around two solar radii, the proton temperatures are high (~ 5 million degrees) and the minor ions are correspondingly hotter, roughly in proportion to their mass. Moreover we argue that since the energy flux needed to power the quiet corona in closed field regions is about the same as that needed to drive the fast solar wind, and also because at deeper levels (< 2 × 105 K) there is no great difference in the properties of supergranules and network in closed and open field regions, the heating process (i.e., dissipation of high frequency waves) must be the same in both cases. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Recent SOHO/UVCS observations indicate that the perpendicular proton and ion temperatures are much larger than electron temperatures. In the present study we simulate numerically the solar wind flow in a coronal hole with the two-fluid approach. We investigate the effects of electron and proton temperatures on the solar wind acceleration by nonlinear waves. In the model the nonlinear waves are generated by Alfvén waves with frequencies in the 10-3 Hz range, driven at the base of the coronal hole. The resulting electron and proton flow profile exhibits density and velocity fluctuations. The fluctuations may steepen into shocks as they propagate away from the sun. We calculate the effective proton temperature by combining the thermal and wave velocity of the protons, and find qualitative agreement with the proton kinetic temperature increase with height deduced from the UVCS Ly-α observations by Kohl et al. (1998). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
It is only within the last 5 years that we have learned how to recognize the unambiguous signature of magnetic reconnection in the solar wind in the form of roughly Alfvénic accelerated plasma flows embedded within bifurcated magnetic field reversal regions (current sheets). This paper provides a brief overview of what has since been learned about reconnection in the solar wind from both single and multi-spacecraft observations of these so-called reconnection exhausts.  相似文献   

8.
Voitenko  Yuriy  Goossens  Marcel 《Space Science Reviews》2003,107(1-2):387-401
We study kinetic excitation mechanisms for high-frequency dispersive Alfvén waves in the solar corona, solar wind, and Earth's magnetosphere. The ion-cyclotron and Cherenkov kinetic effects are important for these waves which we call the ion-cyclotron kinetic Alfvén waves (ICKAWs). Ion beams, anisotropic particles distributions and currents provide free energy for the excitation of ICKAWs in space plasmas. As particular examples we consider ICKAW instabilities in the coronal magnetic reconnection events, in the fast solar wind, and in the Earth's magnetopause. Energy conversion and transport initiated by ICKAW instabilities is significant for the whole dynamics of Sun-Earth connection chain, and observations of ICKAW activity could provide a diagnostic/predictive tool in the space environment research. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Using empirical velocity distributions derived from UVCS and SUMER ultraviolet spectroscopy, we construct theoretical models of anisotropic ion temperatures in the polar solar corona. The primary energy deposition mechanism we investigate is the dissipation of high frequency (10-10000 Hz) ion-cyclotron resonant Alfvén waves which can heat and accelerate ions differently depending on their charge and mass. We find that it is possible to explain the observed high perpendicular temperatures and strong anisotropies with relatively small amplitudes for the resonant waves. There is suggestive evidence for steepening of the Alfvén wave spectrum between the coronal base and the largest heights observed spectroscopically. Because the ion-cyclotron wave dissipation is rapid, even for minor ions like O5+, the observed extended heating seems to demand a constantly replenished population of waves over several solar radii. This indicates that the waves are generated gradually throughout the wind rather than propagated up from the base of the corona. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
We present a brief overview of the probable velocity-shear induced phenomena in solar plasma flows. Shear-driven MHD wave oscillations may be the needed mechanism for the generation of solar Alfvén waves, for the transmission of fast waves through the transition region, and for the acceleration of the solar wind. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
We review our recent results of Alfvén wave-driven winds. First, we present the result of self-consistent 1D MHD simulations for solar winds from the photosphere to interplanetary region. Here, we emphasize the importance of the reflection of Alfvén waves in the density stratified corona and solar winds. We also introduce the recent Hinode observation that might detect the reflection signature of transverse (Alfvénic) waves by Fujimura and Tsuneta (Astrophys. J. 702:1443, 2009). Then, we show the results of Alfvén wave-driven winds from red giant stars. As a star evolves to the red giant branch, the properties of stellar winds drastically change from steady coronal winds to intermittent chromospheric winds. We also discuss how the stellar evolution affects the wave reflection in the stellar atmosphere and similarities and differences of accretion disk winds by MHD turbulence.  相似文献   

12.
We have surveyed solar wind plasma beta and field-aligned Alfvénic Mach number using Ulysses and Wind data. We show the characteristic timescale and occurrence frequency of ‘magnetically dominated’ solar wind, whose interaction with a planetary magnetosphere may produce a bow shock with multiple shock fronts. We discuss radial, latitudinal, and solar cycle effects. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
We present a comprehensive review of MHD wave behaviour in the neighbourhood of coronal null points: locations where the magnetic field, and hence the local Alfvén speed, is zero. The behaviour of all three MHD wave modes, i.e. the Alfvén wave and the fast and slow magnetoacoustic waves, has been investigated in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null points, for a variety of assumptions, configurations and geometries. In general, it is found that the fast magnetoacoustic wave behaviour is dictated by the Alfvén-speed profile. In a ??=0 plasma, the fast wave is focused towards the null point by a refraction effect and all the wave energy, and thus current density, accumulates close to the null point. Thus, null points will be locations for preferential heating by fast waves. Independently, the Alfvén wave is found to propagate along magnetic fieldlines and is confined to the fieldlines it is generated on. As the wave approaches the null point, it spreads out due to the diverging fieldlines. Eventually, the Alfvén wave accumulates along the separatrices (in 2D) or along the spine or fan-plane (in 3D). Hence, Alfvén wave energy will be preferentially dissipated at these locations. It is clear that the magnetic field plays a fundamental role in the propagation and properties of MHD waves in the neighbourhood of coronal null points. This topic is a fundamental plasma process and results so far have also lead to critical insights into reconnection, mode-coupling, quasi-periodic pulsations and phase-mixing.  相似文献   

14.
The origins of the hot solar corona and the supersonically expanding solar wind are still the subject of much debate. This paper summarizes some of the essential ingredients of realistic and self-consistent models of solar wind acceleration. It also outlines the major issues in the recent debate over what physical processes dominate the mass, momentum, and energy balance in the accelerating wind. A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a physically motivated way of specifying the coronal heating rate. Recent models that assume the energy comes from Alfvén waves that are partially reflected, and then dissipated by magnetohydrodynamic turbulence, have been found to reproduce many of the observed features of the solar wind. This paper discusses results from these models, including detailed comparisons with measured plasma properties as a function of solar wind speed. Some suggestions are also given for future work that could answer the many remaining questions about coronal heating and solar wind acceleration.  相似文献   

15.
In this work we examine the damping of Alfvén waves as a source of plasma heating in disks and magnetic funnels of young solar like stars, the T Tauri stars. We apply four different damping mechanisms in this study: viscous-resistive, collisional, nonlinear and turbulent, exploring a wide range of wave frequencies, from 10−5Ωi to 10−1Ωi (where Ωi is the ion-cyclotron frequency). The results show that Alfvénic heating can increase the ionization rate of accretion disks and elevate the temperature of magnetic funnels of T Tauri stars opening possibilities to explain some observational features of these objects. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
The Earth’s magnetotail is an extremely complex system which—energized by the solar wind—displays many phenomena, and Alfvén waves are essential to its dynamics. While Alfvén waves were first predicted in the early 1940’s and ample observations were later made with rockets and low-altitude satellites, observational evidence of Alfvén waves in different regions of the extended magnetotail has been sparse until the beginning of the new millennium. Here I provide a phenomenological overview of Alfvén waves in the magnetotail organized by region—plasmasphere, central plasma sheet, plasma sheet boundary layer, tail lobes, and reconnection region—with an emphasis on spacecraft observations reported in the new millennium that have advanced our understanding concerning the roles of Alfvén waves in the dynamics of the magnetotail. A brief discussion of the coupling of magnetotail Alfvén waves and the low-altitude auroral zone is also included.  相似文献   

17.
We discuss the recent progress in studying the absolute and convective instabilities of circularly polarized Alfvén waves (pump waves) propagating along an ambient magnetic field in the approximation of ideal magnetohydrodynamics (MHD). We present analytical results obtained for pump waves with small dimensionless amplitude a, and compare them with numerical results valid for arbitrary a. The type of instability, absolute or convective, depends on the velocity U of the reference frame where the pump wave is observed with respect to the rest plasma. One of the main results of our analysis is that the instability is absolute when U l < U < U r and convective otherwise. We study the dependences of U l and U r on a and the ratio of the sound speed to the Alfvén speed b. We also present the results of calculation of the increment of the absolute instability on U for different values of a and b. When the instability is convective (U < U l or U > U r) we consider the signalling problem, and show that spatially amplifying waves exist only when the signalling frequency is in two symmetric frequency bands. Then, we write down the analytical expressions determining the boundaries of these frequency bands and discuss how they agree with numerically calculated values. We also present the dependences of the maximum spatial amplification rate on U calculated both analytically and numerically. The implication of the obtained results on the interpretation of observational data from space missions is discussed. In particular, it is shown that circularly polarized Alfvén waves propagating in the solar wind are convectively unstable in a reference frame of any realistic spacecraft.  相似文献   

18.
We take stock of recent observations that identify the episodic plasma heating and injection of Alfvénic energy at the base of fast solar wind (in coronal holes). The plasma heating is associated with the occurrence of chromospheric spicules that leave the lower solar atmosphere at speeds of order 100?km/s, the hotter coronal counterpart of the spicule emits radiation characteristic of root heating that rapidly reaches temperatures of the order of 1?MK. Furthermore, the same spicules and their coronal counterparts (“Propagating Coronal Disturbances”; PCD) exhibit large amplitude, high speed, Alfvénic (transverse) motion of sufficient energy content to accelerate the material to high speeds. We propose that these (disjointed) heating and accelerating components form a one-two punch to supply, and then accelerate, the fast solar wind. We consider some compositional constraints on this concept, extend the premise to the slow solar wind, and identify future avenues of exploration.  相似文献   

19.
The space-based observatories SOHO and TRACE have shown some very interesting results on the structure and dynamics of the Sun and its atmosphere, e.g., the extremely high ion temperatures or the enormous variability in the corona. But one question is still open to debate: how to use these data to distinguish between different types of physical heating processes, as, e.g., absorption of high-frequency Alfvén-waves or reconnection events? This paper will discuss some possibilities on how to tackle this type of question. These include observations of ion temperature anisotropies and electron temperatures in the corona as well as measurements of coronal magnetic fields. Emphasis will be put on simultaneous observations of the whole solar atmosphere from the photosphere into the solar wind and on solar-stellar connections. In the light of these ideas new proposed space missions as well as ground based efforts will be discussed.  相似文献   

20.
A review is given for cyclotron resonant interactions in space plasmas. After giving a simple formulation for the test particle approach, illustrative examples for resonant interactions are given. It is shown that for obliquely propagating whistler waves, not only fundamental cyclotron resonance, but also other resonances, such as transit-time resonance, anomalous cyclotron resonance, higher-harmonic cyclotron resonance, and even subharmonic resonance can come into play. A few recent topics of cyclotron resonant interactions, such as electron injection in shocks, cyclotron resonant heating of solar wind heavy ions, and relativistic modifications, are also reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号