共查询到20条相似文献,搜索用时 0 毫秒
1.
A. Lazarian L. Vlahos G. Kowal H. Yan A. Beresnyak E. M. de Gouveia?Dal?Pino 《Space Science Reviews》2012,173(1-4):557-622
Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700–718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail. 相似文献
2.
Amongst its complement of particles and fields instruments, the Galileo spacecraft carries an Energetic Particles Detector (EPD) designed to measure the characteristics of particle populations important in determining the size, shape, and dynamics of the Jovian magnetosphere. To do this the EPD provides 4 angular coverage and spectral measurements for Z 1 ions from 20 keV to 55 MeV, for electrons from 15 keV to > 11 MeV, and for the elemental species helium through iron from approximately 10 keV nucl-1 to 15 MeV nucl-1. Two bi-directional telescopes, mounted on a stepping platform, employ magnetic deflection, energy loss versus energy, and time-of-flight techniques to provide 64 rate channels and pulse height analysis of priority selected events. The EPD data system provides a large number of possible operational modes from which a small number will be selected to optimize data collection during the many encounter and cruise phases of the mission. The EPD employs a number of safeing algorithms that are to be used in the event that its self-checking procedures indicate a problem. The EPD has demonstrated its operational flexibility throughout the long evolution of the Galileo program by readily accommodating a variety of secondary mission objectives occasioned by the changing mission profile, such as the Venus flyby and the Earth 1 and 2 encounters. To date the EPD performance in flight has been nominal. In this paper we describe the instrument and its operation. 相似文献
3.
Energetic particle observations in the interplanetary medium provide fundamental information about the origin, development
and structure of coronal mass ejections. This paper reviews the status of our understanding of the ways in which particles
are energised at the Sun in association with CMEs. This understanding will remain incomplete until the relationship between
CMEs and flares is determined and we know the topology of the associated magnetic fields. The paper also discusses the characteristics
of interplanetary CMEs that may be probed using particle observations. 相似文献
4.
M. Scholer G. Mann S. Chalov M.I. Desai L.A. Fisk J.R. Jokipii R. Kallenbach E. Keppler J. Kóta H. Kunow M.A. Lee T.R. Sanderson G.M. Simnett 《Space Science Reviews》1999,89(1-2):369-399
On the basis of the observational picture established in the report of Mason, von Steiger et al. (1999) the status of theoretical models on origin, injection, and acceleration of particles associated with Corotating Interaction
Regions (CIRs) is reviewed. This includes diffusive or first-order Fermi acceleration at oblique shocks, adiabatic deceleration
in the solar wind, stochastic acceleration in Alfvén waves and oblique propagating magnetosonic waves, and shock surfing as
possible injection mechanism to discriminate pickup ions from solar wind ions.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
5.
H. M. Fischer J. D. Mihalov L. J. Lanzerotti G. Wibberenz K. Rinnert F. O. Gliem J. Bach 《Space Science Reviews》1992,60(1-4):79-90
The Energetic Particles Investigation (EPI) instrument operates during the pre-entry phase of the Galileo Probe. The major science objective is to study the energetic particle population in the innermost regions of the Jovian magnetosphere — within 4 radii of the cloud tops — and into the upper atmosphere. To achieve these objectives the EPI instrument will make omnidirectional measurements of four different particle species — electrons, protons, alpha-particles, and heavy ions (Z > 2). Intensity profiles with a spatial resolution of about 0.02 Jupiter radii will be recorded. Three different energy range channels are allocated to both electrons and protons to provide a rough estimate of the spectral index of the energy spectra. In addition to the omnidirectional measurements, sectored data will be obtained for certain energy range electrons, protons, and alpha-particles to determine directional anisotropies and particle pitch angle distributions. The detector assembly is a two-element telescope using totally depleted, circular silicon surfacebarrier detectors surrounded by a cylindrical tungsten shielding with a wall thickness of 4.86 g cm-2. The telescope axis is oriented normal to the spherical surface of the Probe's rear heat shield which is needed for heat protection of the scientific payload during the Probe's entry into the Jovian atmosphere. The material thickness of the heat shield determines the lower energy threshold of the particle species investigated during the Probe's pre-entry phase. The EPI instrument is combined with the Lightning and Radio Emission Detector (LRD) such that the EPI sensor is connected to the LRD/EPI electronic box. In this way, both instruments together only have one interface of the Probe's power, command, and data unit. 相似文献
6.
G.M. Mason R. Von Steiger R.B. Decker M.I. Desai J.R. Dwyer L.A. Fisk G. Gloeckler J.T. Gosling M. Hilchenbach R. Kallenbach E. Keppler B. Klecker H. Kunow G. Mann I.G. Richardson T.R. Sanderson G.M. Simnett Y.-M. Wang R.F. Wimmer-Schweingruber M. Fränz J.E. Mazur 《Space Science Reviews》1999,89(1-2):327-367
This report emphasizes new observational aspects of CIR ions revealed by advanced instruments launched on the Ulysses, WIND,
SOHO, and ACE spacecraft, and by the unique vantage point of Ulysses which carried out the first survey of Corotating Interaction
Region (CIR) properties over a very wide range of heliolatitudes. With this more complete observational picture established,
this review is the basis to consider the status of theoretical models on origin, injection, and acceleration of CIR particles
reported by Scholer, Mann et al. (1999) in this volume.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
7.
Donald V. Reames 《Space Science Reviews》2018,214(3):61
The relative abundances of chemical elements and isotopes have been our most effective tool in identifying and understanding the physical processes that control populations of energetic particles. The early surprise in solar energetic particles (SEPs) was 1000-fold enhancements in \({}^{3}\mbox{He}/{}^{4}\mbox{He}\) from resonant wave-particle interactions in the small “impulsive” SEP events that emit electron beams that produce type III radio bursts. Further studies found enhancements in Fe/O, then extreme enhancements in element abundances that increase with mass-to-charge ratio \(A/Q\), rising by a factor of 1000 from He to Au or Pb arising in magnetic reconnection regions on open field lines in solar jets. In contrast, in the largest SEP events, the “gradual” events, acceleration occurs at shock waves driven out from the Sun by fast, wide coronal mass ejections (CMEs). Averaging many events provides a measure of solar coronal abundances, but \(A/Q\)-dependent scattering during transport causes variations with time; thus if Fe scatters less than O, Fe/O is enhanced early and depleted later. To complicate matters, shock waves often reaccelerate impulsive suprathermal ions left over or trapped above active regions that have spawned many impulsive events. Direct measurements of ionization states \(Q\) show coronal temperatures of 1–2 MK for most gradual events, but impulsive events often show stripping by matter traversal after acceleration. Direct measurements of \(Q\) are difficult and often unavailable. Since both impulsive and gradual SEP events have abundance enhancements that vary as powers of \(A/Q\), we can use abundances to deduce the probable \(Q\)-values and the source plasma temperatures during acceleration, ≈3 MK for impulsive SEPs. This new technique also allows multiple spacecraft to measure temperature variations across the face of a shock wave, measurements otherwise unavailable and provides a new understanding of abundance variations in the element He. Comparing coronal abundances from SEPs and from the slow solar wind as a function of the first ionization potential (FIP) of the elements, remaining differences are for the elements C, P, and S. The theory of the fractionation of ions by Alfvén waves shows that C, P, and S are suppressed because of wave resonances during chromospheric transport on closed magnetic loops but not on open magnetic fields that supply the solar wind. Shock waves can accelerate ions from closed coronal loops that easily escape as SEPs, while the solar wind must emerge on open fields. 相似文献
8.
Donald V. Reames 《Space Science Reviews》1998,85(1-2):327-340
In the large solar energetic particle (SEP) events, coronal mass ejections (CMEs) drive shock waves out through the corona
that accelerate elements of the ambient material to MeV energies in a fairly democratic, temperature-independent manner. These
events provide the most complete source of information on element abundances in the corona. Relative abundances of 22 elements
from H through Zn display the well-known dependence on the first ionization potential (FIP) that distinguishes coronal and
photospheric material. For most elements, the main abundance variations depend upon the gyrofrequency, and hence on the charge-to-mass
ratio, Q/A, of the ion. Abundance variations in the dominant species, H and He, are not Q/A dependent, presumably because
of non-linear wave-particle interactions of H and He during acceleration. Impulsive flares provide a different sample of material
that confirms the Ne:Mg:Si and He/C abundances in the corona.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
9.
We present a brief introduction to the essential physics of coronal mass ejections as well as a review of theory and models
of CME initiation, solar energetic particle (SEP) acceleration, and shock propagation. A brief review of the history of CME
models demonstrates steady progress toward an understanding of CME initiation, but it is clear that the question of what initiates
CMEs has still not been solved. For illustration, we focus on the flux cancellation model and the breakout model. We contrast
the similarities and differences between these models, and we examine how their essential features compare with observations.
We review the generation of shocks by CMEs. We also outline the theoretical ideas behind the origin of a gradual SEP event
at the evolving CME-driven coronal/interplanetary shock and the origin of “impulsive” SEP events at flare sites of magnetic
reconnection below CMEs. We argue that future developments in models require focused study of “campaign events” to best utilize
the wealth of available CME and SEP observations. 相似文献
10.
This paper reviews three important effects on energetic particles of corotating interaction regions (CIRs) in the solar wind that are formed at the leading edges of high-speed solar wind streams originating in coronal holes. A brief overview of CIRs and their important features is followed by a discussion of CIR-associated modulations in the galactic cosmic ray intensity, with an emphasis on observations made by spacecraft particle telescope ‘anti-coincidence’ guards. Such guards combine high counting rates (hundreds of counts/s) and a lower rigidity response than neutron monitors to provide detailed information on the relationship between cosmic ray modulations and CIR structure. The modulation of Jovian electrons by CIRs is then described. Finally, the acceleration of ions to energies of ~20 MeV/n in the vicinity of CIRs is reviewed. 相似文献
11.
R. A. Leske R. A. Mewaldt C. M. S. Cohen A. C. Cummings E. C. Stone M. E. Wiedenbeck T. T. von Rosenvinge 《Space Science Reviews》2007,130(1-4):195-205
Solar energetic particles (SEPs) provide a sample of the Sun from which solar composition may be determined. Using high-resolution
measurements from the Solar Isotope Spectrometer (SIS) onboard NASA’s Advanced Composition Explorer (ACE) spacecraft, we have
studied the isotopic composition of SEPs at energies ≥20 MeV/nucleon in large SEP events. We present SEP isotope measurements
of C, O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni made in 49 large events from late 1997 to the present. The isotopic composition
is highly variable from one SEP event to another due to variations in seed particle composition or due to mass fractionation
that occurs during the acceleration and/or transport of these particles. We show that various isotopic and elemental enhancements
are correlated with each other, discuss the empirical corrections used to account for the compositional variability, and obtain
estimated solar isotopic abundances. We compare the solar values and their uncertainties inferred from SEPs with solar wind
and other solar system abundances and find generally good agreement. 相似文献
12.
Energetic particles in the heliosphere, from relatively low-energy particles which are accelerated in Corotating Interaction Regions (CIRs) to galactic cosmic rays, are observed to propagate relatively easily in heliographic latitude. Two mechanisms for this transport appear possible: cross-field diffusion, or, in a recent model for the heliospheric magnetic field, by direct magnetic connection. The commonalties and differences of these two mechanisms are considered, and the need for future observations and modeling efforts are discussed. This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
13.
R. A. Mewaldt C. M. S. Cohen G. M. Mason D. K. Haggerty M. I. Desai 《Space Science Reviews》2007,130(1-4):323-328
Data from ACE and GOES have been used to measure Solar Energetic Particle (SEP) fluence spectra for H, He, O, and Fe, over
the period from October 1997 to December 2005. The measurements were made by four instruments on ACE and the EPS sensor on
three GOES satellites and extend in energy from ∼0.1 MeV/nuc to ∼100 MeV/nuc. Fluence spectra for each species were fit by
conventional forms and used to investigate how the intensities, composition, and spectral shapes vary from year to year. 相似文献
14.
R. A. Mewaldt C. M. S. Cohen G. M. Mason A. C. Cummings M. I. Desai R. A. Leske J. Raines E. C. Stone M. E. Wiedenbeck T. T. von Rosenvinge T. H. Zurbuchen 《Space Science Reviews》2007,130(1-4):207-219
Although the average composition of solar energetic particles (SEPs) and the bulk solar wind are similar in a number of ways,
there are key differences which imply that solar wind is not the principal seed population for SEPs accelerated by coronal
mass ejection (CME) driven shocks. This paper reviews these composition differences and considers the composition of other
possible seed populations, including coronal material, impulsive flare material, and interplanetary CME material. 相似文献
15.
16.
N. V. Pogorelov H. Fichtner A. Czechowski A. Lazarian B. Lembege J. A. le Roux M. S. Potgieter K. Scherer E. C. Stone R. D. Strauss T. Wiengarten P. Wurz G. P. Zank M. Zhang 《Space Science Reviews》2017,212(1-2):193-248
This paper summarizes the results obtained by the team “Heliosheath Processes and the Structure of the Heliopause: Modeling Energetic Particles, Cosmic Rays, and Magnetic Fields” supported by the International Space Science Institute (ISSI) in Bern, Switzerland. We focus on the physical processes occurring in the outer heliosphere, especially at its boundary called the heliopause, and in the local interstellar medium. The importance of magnetic field, charge exchange between neutral atoms and ions, and solar cycle on the heliopause topology and observed heliocentric distances to different heliospheric discontinuities are discussed. It is shown that time-dependent, data-driven boundary conditions are necessary to describe the heliospheric asymmetries detected by the Voyager spacecraft. We also discuss the structure of the heliopause, especially due to its instability and magnetic reconnection. It is demonstrated that the Rayleigh–Taylor instability of the nose of the heliopause creates consecutive layers of the interstellar and heliospheric plasma which are magnetically connected to different sources. This may be a possible explanation of abrupt changes in the galactic and anomalous cosmic ray fluxes observed by Voyager 1 when it was crossing the heliopause structure for a period of about one month in the summer of 2012. This paper also discusses the plausibility of fitting simulation results to a number of observational data sets obtained by in situ and remote measurements. The distribution of magnetic field in the vicinity of the heliopause is discussed in the context of Voyager measurements. It is argued that a classical heliospheric current sheet formed due to the Sun’s rotation is not observed by in situ measurements and should not be expected to exist in numerical simulations extending to the boundary of the heliosphere. Furthermore, we discuss the transport of energetic particles in the inner and outer heliosheath, concentrating on the anisotropic spatial diffusion diffusion tensor and the pitch-angle dependence of perpendicular diffusion and demonstrate that the latter can explain the observed pitch-angle anisotropies of both the anomalous and galactic cosmic rays in the outer heliosheath. 相似文献
17.
18.
19.
R. A. Mewaldt 《Space Science Reviews》2006,124(1-4):303-316
Recent progress in measuring the composition and energy spectra of solar energetic particles (SEPs) accelerated by CME-driven
shocks is reviewed, including a comparison of the observed charge-to-mass dependence of breaks in SEP spectra with model predictions.
Also discussed is a comparison of SEP and CME kinetic energies in seventeen large SEP events, and estimates of the SEP radiation
dose that astronauts would be subject to once they venture outside the protective cover of Earth’s magnetosphere. 相似文献
20.
Anderson Gorden F. Kelly James G. 《IEEE transactions on aerospace and electronic systems》1967,(4):613-622
An experimental method applying microwave techniques to obtain continuous measurement of both the shock and contact discontinuities bounding an air plasma generated in a cylindrical hypersonic shock tube is developed. X-band microwave signals excited in the TE11 mode reflect from the moving shock and contact surfaces. The resulting FM interference pattern is demodulated, yielding continuous velocity versus time data. Results depicting subtle detail of velocity behavior, particularly of the shock front, were obtained over a shock Mach number range of 9 to 13. 相似文献