首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results of the Viking mission seem to indicate that there is a ubiquitous layer of highly oxidizing aeolian material covering the Martian surface. This layer is thought to oxidize organic material that may settle on it, and is therefore responsible for the lack of detection of organic matter on the planet's surface by Viking. The mechanism that creates the oxidizing condition is not well understood, nor is the extent of the oxidation potential of this material. It has been suggested that the oxidizing nature of the soil is due to photochemical reactions which create hydrogen peroxide and superoxides in the surface soil. One question of importance to planetary protection regarding this material is, what is its potential for destroying terrestrial microorganisms, thus making the surface of Mars "self-sterilizing"? Using data obtained by the gas exchange experiment on Viking, and for simplicity assuming that all of the O2 released came from H2O2, the concentration range for H2O2 on the surface of Mars can be calculated to be 25-250 ppm. The microbial disinfection rate by H2O2 is concentration dependent, and is highly variable within the microbial community. Data from our laboratory indicate that certain soil bacteria survive and grow to stationary phase in 30,000 ppm H2O2. However, the total number of organisms decreases in the presence of H2O2. These results indicate that it is doubtful that the presence of H2O2 alone on Mars would make the surface "self-sterilizing".  相似文献   

2.
3.
党兆龙  陈百超 《深空探测学报》2016,3(2):129-133,144
火星土壤既是火星表面探测活动的主要探测对象,也是表面探测器设计中需考虑的重要因素之一。火壤的物理力学特性将直接影响着陆器着陆缓冲系统、火星车移动系统等的设计。此外,在着陆器和火星车等表面探测器的地面研制过程中,需要研制模拟火壤,形成模拟的火星表面环境,开展相关的着陆器着陆缓冲性能、火星车移动性能等验证试验。迄今为止,人类已经有多个探测器登陆火星,获取了大量的有关火壤的信息,也研制了多种模拟火壤。通过对已有火壤和模拟火壤的物理力学特性分析,梳理出火壤物理力学特性的参数范围,可为我国火星探测器的研制提供参考。  相似文献   

4.
The survivability of resistant terrestrial microbes, bacterial spores of Bacillus subtilis, was investigated in the BIOPAN facility of the European Space Agency onboard of Russian Earth-orbiting FOTON satellites (BIOPAN I -III missions). The spores were exposed to different subsets of the extreme environmental parameters in space (vacuum, extraterrestrial solar UV, shielding by protecting materials like artificial meteorites). The results of the three space experiments confirmed the deleterious effects of extraterrestrial solar UV radiation which, in contrast to the UV radiation reaching the surface of the Earth, also contains the very energy-rich, short wavelength UVB and UVC radiation. Thin layers of clay, rock or meteorite material were shown to be only successful in UV-shielding, if they are in direct contact with the spores. On Mars the UV radiation climate is similar to that of the early Earth before the development of a protective ozone layer in the atmosphere by the appearance of the first aerobic photosynthetic bacteria. The interference of Martian soil components and the intense and nearly unfiltered Martian solar UV radiation with spores of B. subtilis will be tested with a new BIOPAN experiment, MARSTOX. Different types of Mars soil analogues will be used to determine on one hand their potential toxicity alone or in combination with solar UV (phototoxicity) and on the other hand their UV protection capability. Two sets of samples will be placed under different cut-off filters used to simulate the UV radiation climate of Mars and Earth. After exposure in space the survival of and mutation induction in the spores will be analyzed at the DLR, together with parallel samples from the corresponding ground control experiment performed in the laboratory. This experiment will provide new insights into the principal limits of life and its adaptation to environmental extremes on Earth or other planets which and will also have implications for the potential for the evolution and distribution of life.  相似文献   

5.
Multiplanetary life has been studied by scientists as a way to supply energy or sustain human life in the future. Mars is likely to be man’s first destination, colonization using onsite structural construction would be one of the main options. The first step to designing a reliable building is to know the applied structural loads and to have an accurate design load combination. Due to lack of complete knowledge, short span of recorded data, Martian environment, and hazardous environment that Martian structures face, constructed Martian structures should behave appropriately under the highest likely live, dead and environmental loads either simultaneously or as a worst-case scenario. The present study evaluated and calculated probable Martian structural loads, including live, internal pressure, snow, gravity (dead), dust accumulation, thermal stress, wind, marsquake, asteroid, and meteoroid impact loads and their effects. Information was gathered from previous studies and valid data from Martian landers, rovers and orbiters. Wind loads were calculated based on the over 6.5 years of data recorded by Vikings 1 and 2, temperature and winds for InSight (TWINS) sensor. A wind shear exponent and wind profile have been proposed for a Martian flat terrain construction site. Marsquake lateral loads, frequency content and seismicity were assessed using data from the seismic experiment for interior structure (SEIS) and the Viking 2 seismometer. Considering the high influx of micrometeoroids, their penetration distance, impact loads and their effects on structures were calculated. The annual probability of an asteroid impact on a settlement was assessed for a 30-year mission. A load map for Martian residential buildings that considers the worst-case scenario in which a Martian structure should be designed based on them has been proposed.  相似文献   

6.
Nitrogen is an essential element for life. Specifically, “fixed nitrogen” (i.e., NH3, NH4+, NOx, or N that is chemically bound to either inorganic or organic molecules and is releasable by hydrolysis to NH3 or NH4+) is the form of nitrogen useful to living organisms. To date no direct analysis of Martian soil nitrogen content, or content of fixed nitrogen compounds has been done. Consequently, the planet's total inventory of nitrogen is unknown. What is known is that the N2 content of the present-day Martian atmosphere is 0.2 mbar. It has been hypothesized that early in Mars' history (3 to 4 billion years ago) the Martian atmosphere contained much more N2 than it does today. The values of N2 proposed for this early Martian atmosphere, however, are not well constrained and range from 3 to 300 mbar of N2. If the early atmosphere of Mars did contain much more N2 than it does today the question to be answered is, Where did it go? The two main processes that could have removed it rapidly from the atmosphere include: 1) nonthermal escape of N-atoms to space; and 2) burial within the regolith as nitrates and nitrites. Nitrate will be stable in the highly oxidized surface soil of Mars, and will tend to accumulate in the soil. Such accumulations are observed in certain desert environments on Earth. Some NH4+---N may also be fixed and stabilized in the soil by inclusion as a structural cation in the crystal lattices of certain phyllosilicates replacing K. Analysis of the Martian soil for traces of NO3 and NH4+ during future missions will supply important information regarding the nitrogen abundance on Mars, its past climate as well as its potential for the evolution of life.  相似文献   

7.
Early Earth and early Mars were similar enough such that past geochemical and climatic conditions on Mars may have also been favorable for the origin of life. However, one of the most striking differences between the two planets was the low partial pressure of dinitrogen (pN2) on early Mars (18 mb). On Earth, nitrogen is a key biological element and in many ecosystems the low availability of fixed nitrogen compounds is the main factor limiting growth. Biological fixation of dinitrogen on Earth is a crucial source of fixed nitrogen. Could the low availability of dinitrogen in the primordial Martian atmosphere have prevented the existence, or evolution of Martian microbiota? Azotobacter vinelandii and Azomonas agilis were grown in nitrogen free synthetic medium under various partial pressures of dinitrogen ranging from 780-0 mb (total atmosphere=1 bar). Below 400 mb the biomass, cell number, and growth rate decreased with decreasing pN2. Both microorganisms were capable of growth at a pN2 as low as 5 mb, but no growth was observed at a pN2 < or = 1 mb. The data appear to indicate that biological nitrogen fixation could have occurred on primordial Mars (pN2=18 mb) making it possible for a biotic system to have played a role in the Martian nitrogen cycle. It is possible that nitrogen may have played a key role in the early evolution of life on Mars, and that later a lack of available nitrogen on that planet (currently, pN2=0.2 mb) may have been involved in its subsequent extinction.  相似文献   

8.
The radiative and chemical conditions at the surface and in the lower Martian atmosphere are computed at various latitudes and seasons combining a 2D photochemical model and radiation simulations. In most situations, the solar UV B and C radiations reach the surface however, suspended dust and, in polar cases, ozone can constitute an effective UV shield. The daytime and night time concentrations of the sterilizing oxidants: OH, H2O2 and O3 are determined, as well as the concentration of the substances which could influence the metabolism of microorganisms. The possible habitats of a remaining Mar's life as well as the possibilities of contamination by resistant earth life forms will be described.  相似文献   

9.
The origin of the anisotropy in the shape of the Martian obstacle and bow shock is analyzed using Mars Global Surveyor observations. The influence of MHD or ion pick-up effects on Martian obstacle position was to be small found, however, localized Martian crustal magnetization increases the thickness of the downstream planetary magnetotail by 500–1000 km in agreement with earlier Phobos 2 observations. A new analytical model is presented for Martian obstacle shape variation for different solar wind ram pressure. Elongation of the Martian BS cross-section in the direction perpendicular to IMF was confirmed while the shift of this cross section in the +Y direction of Martian interplanetary medium reference frame was discovered. The shift of BS cross section in the direction of interplanetary electric field was not revealed thus not conforming the idea that mass-loading play some role in BS control.  相似文献   

10.
The current Martian water cycle is extremely asymmetric, with large amounts of vapor subliming off a permanent north polar water ice cap in northern summer, but with no apparent major source of water vapor in the southern hemisphere. Detailed simulations of this process with a three-dimensional circulation model indicate that the summertime interhemispheric exchange (Hadley cell) is very much stronger than transport by eddies in other seasons. As a result, water ice would be distributed globally were it not for the buffering action of regolith soil adsorption which limits the net flux of water vapor off the north polar cap to amounts that are insignificant even on the scale of thousands of years. It has been suggested that the polar layered deposits are the result of exchange on these long time scales, driven by changes in Martian orbital parameters. We therefore are conducting simulations to test the effect of varied orbital parameters on the Martian water cycle. We find that when the perihelion summer pole is charged with a polar water ice cap, large quantities of water are quickly transfered to the aphelion summer pole, setting up an annual cycle that resembles the present one. Thus, the adsorptivity of the Martian regolith may be in the narrow range where it can limit net transport from the aphelion but not the perihelion pole.  相似文献   

11.
China plans to implement the first Mars exploration mission in 2020. It will conduct global and comprehensive exploration of Mars and high precision and fine resolution detection of key areas on Mars through orbiting, landing and roving. The scientific objectives include studying the Martian morphology and geological structure characteristics, studying the soil characteristics and the water-ice distribution on the Martian surface, studying the material composition on the Martian surface, studying the atmosphere ionosphere and surface climate and environmental characteristics of Mars, studying the physical field and internal structure of Mars and the Martian magnetic field characteristics. The mission equips 12 scientific payloads to achieve these scientific objectives. This paper mainly introduces the scientific objectives, exploration task, and scientific payloads.  相似文献   

12.
The saline soils of the ice free dry valleys of Victoria Land, Antarctica may provide the closest analog on Earth to Martian conditions. We have initiated a study aimed at examining microbial adaptations to the harsh environment of these dry valley soils. In this report we describe the characterization of one bacterium, strain A4a, isolated from Taylor Valley soil. Strain A4a was an obligately aerobic, orange-pigmented, Gram-positive coccus that grew over wide ranges of both temperature (0 degrees C-40 degrees C) and sodium chloride concentration (0-2.0M). The optimal temperature for growth at all NaCl concentrations was 25 degrees C. Phospholipid composition and guanine plus cytosine content of the DNA of the isolate indicate a close relation to the genus Planococcus.  相似文献   

13.
Data from experiments with model samples show that ion transfer coefficients in the water-rich permafrost on Mars must be three orders of magnitude less than those of terrestrial permafrost. The effects of low temperatures and of carbon dioxide have been accounted for. Exchange between cells and the environment is impeded in Martian permafrost. The microscopic distributional heterogeneity of concentration, pH, Eh, and other physicochemical parameters may be more pronounced in the permafrost of Mars. We present a classification of unfrozen water types in the permafrost that is based on the structures of unfrozen water films and on their functions with respect to cells. Any viable microorganisms on Mars probably exist with minimum metabolism in compact zones with energy carriers and high transfer coefficients. These zones may be microvolumes of unfrozen water in which cells accumulate.  相似文献   

14.
The two primary requirements for a Martian habitat structure include effective radiation shielding against the Galactic Cosmic Ray (GCR) environment and sufficient structural and thermal integrity. To significantly reduce the cost associated with transportation of such materials and structures from earth, it is imperative that such building materials should be synthesized primarily from Martian in situ resources. This paper illustrates the feasibility of such an approach. Experimental results are discussed to demonstrate the synthesis of polyethylene (PE) from a simulated Martian atmosphere and the fabrication of a composite material using simulated Martian regolith with PE as the binding material. The radiation shielding effectiveness of the proposed composites is analyzed using results from radiation transport codes and exposure of the samples to high-energy beams that serve as a terrestrial proxy for the GCR environment. Mechanical and ballistic impact resistance properties of the proposed composite as a function of composition, processing parameters, and thermal variations are also discussed to evaluate the multifunctionality of such in situ synthesized composite materials.  相似文献   

15.
A mixture of possible Martian volcanic gases were reproduced and irradiated by a high-energy infrared laser to reproduce the effects of lightning on the production of prebiotic molecules. The analysis of products were performed by a gas chromatograph interfaced in parallel with a FTIR-detector and a quadrupole mass spectrometer equipped with an electron impact and chemical ionization modes. The main products identified were hydrocarbons and an uncharacterized yellow film deposit. Preliminary results indicate the presence of hydrogen cyanide among the resultant compounds.  相似文献   

16.
The viewpoint of working group of Russian experts on the problem of planetary protection for future manned and unmanned Mars mission is presented. Recent data of Martian environment and on survival of terrestrial microorganisms in extreme conditions were used for detailed analysis and overview of planetary protection measures in regard to all possible flight situations including accidental landing. The special emphasis on "Mars-94" mission was done. This analysis resulted in revised formulation of spacecraft sterilization requirements and possible measures for their best implementation. New general combined approach to spacecraft sterilization was proposed. It includes penetrating radiation and heat treatment of spacecraft parts and components which is to be carried out before the final assembly of spacecraft and gaseous radiation sterilization of the whole spacecraft during the flight to Mars (or from Mars for return missions).  相似文献   

17.
Electric discharge between two electrically charged surfaces occurs at a well-defined, gas-dependent combination of atmospheric pressure and the distance between those two surfaces, as described by Paschen’s law. The understanding of when the discharge will occur in the conditions present on Mars is essential for designing space-flight hardware that will operate on the Martian surface as well as understanding electrical discharge processes occurring in the Martian atmosphere. Here, we present experimentally measured Paschen curves for a gas mixture representative of the Martian atmosphere and compare our results to breakdown voltages of carbon dioxide, nitrogen, and helium as measured with our system and from the literature. We will discuss possible implications for instrument development as well as implications for processes in the Martian atmosphere. The DC voltage at which electric discharge occurred between two stainless steel spheres was measured at pressures from 10−2 to 100 torr in all gases. We measured a minimum voltage for discharge in the Mars ambient atmosphere of 410 ± 10 V at 0.3 torr cm. As an application, the breakdown properties of space-qualified, electrical wires to be used in the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) were studied.  相似文献   

18.
If life were present on Mars to day, it would face potentially lethal environmental conditions such as a lack of water, frigid temperatures, ultraviolet radiation, and soil oxidants. In addition, the Viking missions did not detect near-surface organic carbon available for assimilation. Autotrophic organisms that lived under a protective layer of sand or gravel would be able to circumvent the ultraviolet radiation and lack of fixed carbon. Two terrestrial photosynthetic near-surface microbial communities have been identified, one in the inter- and supertidal of Laguna Ojo de Liebre (Baja California Sur, Mexico) and one in the acidic gravel near several small geysers in Yellowstone National Park (Wyoming, U.S.A.). Both communities have been studied with respect to their ability to fix carbon under different conditions, including elevated levels of inorganic carbon. Although these sand communities have not been exposed to the entire suite of Martian environmental conditions simultaneously, such communities can provide a useful model ecosystem for a potential extant Martian biota.  相似文献   

19.
Long-term preservation of microbial ecosystems in permafrost.   总被引:8,自引:0,他引:8  
It has been established that significant numbers (up to 10 million cells per gram of sample) of living microorganisms of various ecological and morphological groups have been preserved under permafrost conditions, at temperatures ranging from -9 to -13 degrees C and depths of up to 100 m, for thousands and sometimes millions of years. Preserved since the formation of permafrost in sand-clay sediments of the Pliocene-Quaternary period and in paleosols and peats buried among them, these cells art the only living organisms that have survived for a geologically significant period of time. The complexity of the microbial community preserved varies with the age of the permafrost. Eukaryotes are found only in Holocene sediments; while prokaryotes are found to greater ages, i.e., Pliocene and Pleistocene. The diversity of microorganisms decreases with increasing age of sediments, and as a result cocci and corynebacteria are predominant. Enzyme activity (catalase and hydrolytic enzymes) and photosynthetic pigments (chlorophyll and pheophytin have also been detected in permafrost sediments. These results permit us to outline some approaches to the search for traces of life in the permafrost of Martian sediments by borehole core sampling. It is in the deep horizons (and not on the planet surface), isolated by permafrost from the external conditions, that results similar to those obtained on Earth can be expected.  相似文献   

20.
Phosphorus as a potential guide in the search for extinct life on Mars.   总被引:3,自引:0,他引:3  
In contrast to the search for extant organisms, the quest for fossil remains of life on Mars need not be guided by the presence of water and organic compounds on the present surface. An appropriate tracer might be the element phosphorus which is a common constituent of living systems. Utilizing terrestrial analogues, it should preferentially exist in the form of sedimentary calcium phosphate (phosphorites), which would have readily resisted changing conditions on Mars. Moreover, higher ratios of P/Th in phosphorites in comparison to calcium phosphates from magmatic rocks give us the possibility to distinguish them from inorganically formed phosphorus deposits at or close to the Martian surface. Identification of anomalous phosphorus enrichments by remote sensing or in situ analysis could be promising approaches for selecting areas preferentially composed of rocks with remains of extinct life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号