首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 100 毫秒
1.
非壅塞固体火箭冲压发动机二次燃烧室进气方案研究   总被引:1,自引:3,他引:1  
用k-ε湍流模型以及EBU燃烧模型。对固体火箭冲压发动机二次燃烧三维反应流场进行了数值计算,研究了空气射流与富燃燃气射流动量之比、射流速度和燃气发生器喷管数量对二次燃烧的影响。研究结果表明,当空燃动量比在一定范围内时。若空燃动量比变大,则二次燃烧效率升高;降低空气和燃气射流的速度有利于二次燃烧效率的提高;并且增加燃气发生器喷管数量能增强燃气与空气在头部的掺混效果,为燃烧创造良好的条件。  相似文献   

2.
铝镁推进剂固冲发动机两相燃烧数值模拟   总被引:1,自引:0,他引:1  
针对铝镁推进剂中心进气固冲发动机,湍流模型采用Reynolds应力方程模型,气相燃烧采用涡耗散模型,两相流采用颗粒随机轨道模型,铝颗粒燃烧采用Brooks燃烧模型,对二次燃烧和流动进行了三维、两相和化学反应流场数值模拟,对比和分析了冲压空气与一次燃气无旋、同向及反向旋转3种工况下补燃室燃烧流动特性及燃烧效率,并对不同工...  相似文献   

3.
二次燃烧对燃气弹射载荷和内弹道影响数值研究   总被引:1,自引:0,他引:1  
为了研究二次燃烧对燃气弹射载荷和内弹道的影响,采用有限速率/涡耗散模型模拟初容室内燃气射流与空气的二次燃烧过程,运用域动分层网格更新方法,对导弹尾罩运动区域进行更新。在与实验对比验证的基础上,数值研究了二次燃烧对初容室流场、载荷和内弹道的影响。结果表明,文中建立的数值方法是可靠的,能够有效地捕捉二次燃烧过程中出现的初始压强峰值;富燃燃气与空气发生的二次燃烧使流场温度、压力和载荷高于无二次燃烧流场,而且使导弹出筒时间提前。研究结果可为燃气射流内弹道和结构设计提供理论基础。  相似文献   

4.
采用Reynolds应力方程模型及涡耗散燃烧模型,在不同旋转工况下给定相同进气流量,对侧向进气固冲发动机补燃室湍流反应流场进行了数值计算,得到了燃烧产物的平衡组分、燃烧温度和其他热力学参数,并在此基础上计算了补燃室燃烧效率、发动机推力等参数。数值模拟表明,对于侧向进气固体火箭冲压发动机,在空气射流中引入旋转流动,能有效提高补燃室内的燃烧效率,进一步提高发动机性能。燃烧效率随旋流强度呈先增大、后又减小的规律。采用最佳旋流数的旋转进气后,可使发动机推力提高约2.3%。  相似文献   

5.
凌江  徐义华  孙海俊  冯喜平 《火箭推进》2022,48(1):69-75,89
固体火箭燃气超燃冲压发动机具有高比冲、结构简单、流量易调节等优点,然而在超音速空气流的补燃室中,如何让燃料更好地与空气掺混,增加颗粒停留时间,在较短时间内释放出更多的燃烧焓成为目前研究的重点。采用Realiazble k-ε湍流模型,单步涡团耗散模型,在King的硼颗粒点火燃烧模型的基础上考虑了硼颗粒在高速气流当中的气动剥离效应,利用龙格-库塔算法迭代计算硼颗粒点火燃烧过程,对燃气进气方向与轴向夹角从45°~180°的10种进气方式下的补燃室进行了三维两相燃烧流动计算,分析了各种进气角下的燃气燃烧效率、硼颗粒燃烧效率以及总燃烧效率。结果表明:当一次燃气喷射角度与轴向夹角逐渐增加时,燃气与颗粒燃烧效率逐渐增加,并在180°时燃烧效率和比冲为最高。  相似文献   

6.
固冲发动机补燃室二次燃烧实验研究   总被引:2,自引:0,他引:2  
采用不确定度评定的地面直连冲压实验设备,对某全尺寸固冲发动机补燃室二次燃烧进行了实验研究。通过测定比冲效率,确定了不同的燃气发生器喷嘴结构、空气进气角度、进气头部距离和补燃室长度对二次燃烧的影响,并进行了机理分析。结果表明,五喷嘴比冲效率较高,燃气的切入方式对补燃室二次燃烧有重要影响;增大入射角度,可提高比冲效率,但加剧了燃烧产物在补燃室内的沉积;补燃室头部距离不宜过大,比冲效率不随头部距离线性增加;补燃室长度增加,可使比冲效率提高,但效果并不理想。  相似文献   

7.
固体火箭冲压发动机二次燃烧试验研究   总被引:2,自引:0,他引:2  
针对某工程论证需求,分别采用缩比和全尺寸固体火箭冲压发动机,利用地面直连试验系统,开展了壅塞式固体火箭冲压发动机试验研究,采用燃烧效率和试验比冲作为评价指标,对比分析了燃气发生器进气方式与喷嘴结构、空燃比、燃气流驻留时间、尺寸效应等因素对发动机二次燃烧性能的影响。结果表明,设计的一次进气发动机能够实现高效燃烧;在测试范围内,空燃比增大发动机燃烧效率降低;延长燃气驻留时间,提高了发动机二次燃烧性能。  相似文献   

8.
为研究二次燃烧对火箭地下热发射排焰环境的影响,采用9组分11步反应的H_2-CO燃烧模型模拟火箭出井过程中发动机的燃气流与空气二次燃烧过程,运用域动分层动网格技术,对火箭运动区域进行更新,数值研究二次燃烧对井内流场温度、压力载荷以及火箭出井速度和时间的影响。数值结果表明,富燃燃气与空气混合发生二次燃烧,导致井内局部燃气流温度、压力升高,但在井底导流锥冲击区、排焰道转弯区以及箭体底部和箭体壁面部位温度、压力载荷分布受二次燃烧的影响较小,相对变化率均不大于8.33%;火箭出井速度和时间受二次燃烧的影响可以忽略。  相似文献   

9.
固冲发动机补燃室冷流掺混效果与燃烧效率对比研究   总被引:2,自引:2,他引:0  
在燃气参数相同的条件下,定量分析了多种空气进气形式下的冷流掺混效果和燃烧效率,对其反应流场进行模拟,得到各自的燃烧效率曲线。通过掺混效果和燃烧效率的对比研究,结果表明,冷流掺混效果并不能完全反映二次燃烧效率,原因在于冷流流场分析仅考虑了纯气相流场的掺混效果,而未考虑两相流作用;金属粒子滞留时间对燃烧效率有很大影响。研究结果还表明,提高补燃室燃烧效率,除改善掺混效果外,还应设法延长金属粒子滞留时间。  相似文献   

10.
含硼富燃燃气燃烧实验研究   总被引:1,自引:0,他引:1  
为实现固冲发动机二次燃烧模型验证,结合固冲发动机工作条件,设计了一种带透明观察窗燃烧实验装置;营造了简单的燃烧环境,实现了燃烧过程掺混作用的弱化;借助高速摄像进行了以空气速度作为单一变量的含硼富燃燃气燃烧可视化测量,获得了火焰形态结构;采用高速数据采集,获得了燃烧室压力;将实验数据与数值模拟结果进行了对比和分析。结果表明,燃气与空气速度相近时,火焰呈锥角结构,硼粒子的点火距离较长;燃气与空气速度差较小时,同一位置燃烧室压力较大;燃气与空气速度近似程度决定火焰的形态;数值模拟结果与实验结果基本吻合。  相似文献   

11.
针对采用下颌式进气道的固体火箭冲压发动机,建立了二次燃烧性能计算模型,对掺混燃烧性能进行了仿真研究。研究表明,采用掺混装置可大幅提升下颌式进气道的固冲发动机补燃室一次燃气和空气的掺混均匀度,并通过数值仿真对掺混装置进行了优化。结合数值仿真优化结果,通过地面直连试验,验证了不采用与采用掺混装置的补燃室二次燃烧性能。试验结果表明,合理设计掺混装置,可显著提高补燃室二次燃烧性能,特征速度燃烧效率均在93%以上;空燃比在6~20之间的发动机高空比冲提升了55%以上,空燃比在20~30之间的发动机高空比冲提升了75%以上。  相似文献   

12.
水反应金属燃料发动机三维两相燃烧数值模拟   总被引:2,自引:0,他引:2  
用三维湍流N-S方程及颗粒轨道模型描述水反应金属燃料发动机内部喷雾两相湍流燃烧过程。通过耦合求解气液两相流模型方程,得到发动机燃烧流场。通过模拟Mg与水的反应,分析比较了一次和二次进水方案的不同流场特性。研究结果表明,二次进水方案更有利于火焰稳定和提高燃烧性能。  相似文献   

13.
《Acta Astronautica》2014,93(1):298-310
Numerical simulations were employed to analyze the flowfield of a scramjet with three-dimensional (3D) sidewall compression inlet, and the effect of inlet distortion on the mixing and combustion process was examined. The numerical approach solved the compressible Reynolds Averaged Navier–Stokes (RANS) equations supplemented with a finite rate chemical reacting model for the combustion of hydrogen fuel and air. Turbulence closure was achieved using Menter shear-stress transport (SST) model. To verify the accuracy of the simulation, the computed wall pressure was compared with the experimental data of the direct-connect combustor test. The metrics employed in the simulations included qualitative assessments related to flow structure as well as quantitative values of fuel mixing efficiency, combustion efficiency and static pressure distribution. Intake sidewalls were found to strongly affect the inlet flow structure, which became more complex in the nonuniform flowfield. The shock train system affected the combustion region located upstream of the injection and led to pairs of asymmetric separation bubbles. Nevertheless, the shock train system dissipated due to the reactions, the combustion patterns of each fuel jets in downstream region were nearly identical, and the degree of improvement of mixing and combustion efficiency near the downstream injectors was less than that near the upstream injectors.  相似文献   

14.
基于小偏差线性化思想,利用超声速进气道动力学模型计算得到,进气道激波位置和波后压力的响应幅值随频率增大整体趋于减小,但在各阶纵向谐振频率上存在谐振峰。并进一步考虑了燃烧室加质燃烧,分析了冲压发动机气路动态特性,推导出适用于冲压发动机的集中燃烧模型,研究表明在燃油喷注流量的扰动下,冲压发动机幅频响应谐振峰显著。  相似文献   

15.
固液火箭冲压发动机通过固液两种燃料匹配工作,相比传统的固体火箭冲压发动机和液体燃料冲压发动机具有较为明显的优势.基于离散相模型和单步反应模型,采用Fluent 对设计点飞行参数下,不同结构和不同工况条件下的燃烧室两相反应流场进行了数值仿真.结果表明,燃气发生器喷管参数和进气道进气角度主要影响空气与燃气流的撞击以及头部区...  相似文献   

16.
In this study a flush wall scramjet combustor is tested in a supersonic incoming air flow with the Mach number of 3 which is generated by an air vitiation heater producing the stagnation temperature of 1505 K. Using liquid kerosene as the fuel, the flame is stabilized by means of a centrally mounted O2 pilot strut after being ignited by a plasma torch. During experimental measurements, the fuel is injected with a constant equivalence ratio of 0.8 according to specified strut/wall injection ratios, i.e., a portion of the fuel amount is injected from the strut while the rest is injected from the wall. The strut and wall injectors are arranged at the same axial position. The combustion performance and wall temperature gradients are evaluated with various fuel feeding ratios between the wall and the strut. Experimental results show, when the equivalence ratio is constant and the axial injection position is fixed, the combustion characteristics vary significantly with the strut/wall fuel feeding ratio, especially when this ratio is close to its lowest and highest limits. Among the four fuel feeding ratios examined, the strut only injection mode and the average distributed strut/wall injection mode show the best combustion performance. However, the strut/wall injection mode produces a smaller wall temperature gradient compared to the strut only injection mode, which is due to the significant film cooling effect caused by the wall injected liquid kerosene.  相似文献   

17.
Two-phase flow effect on hybrid rocket combustion   总被引:1,自引:0,他引:1  
Jih Lung Lin   《Acta Astronautica》2009,65(7-8):1042-1057
This study numerically explores the aerodynamic and combustion processes in a hybrid rocket combustor, under a two-phase turbulent flow environment, considering the evaporation, combustion and drag of droplet and droplet ignition criterion. The predictions of temperature, reaction mode, reactant mass fraction, velocity, oxidizer consumption, fuel regression and droplet number distribution enhance understanding of the two-phase combustion aerodynamics inside the combustor. A parametric study of the inlet spray pattern, including spray cone angle, spray injection velocity and droplet size, is performed to improve the operation of reactant mixing and higher fuel regression rate. Analytical results indicate that both the oxidizer consumption and the fuel regression increase with increasing spray cone angle and spray injection velocity in the practical range of operation. However, for stoichiometric operation, the superior spray cone angle is within 20–60°, and spray injection velocity within 20–40 m/s, under a volume-mean droplet radius of 50 μm. The power dependence of solid-fuel regression on total mass flux is found to decrease with rising of droplet mean size.  相似文献   

18.
轴对称结构RBCC发动机超燃模态试验和数值模拟   总被引:1,自引:0,他引:1  
为研究轴对称结构RBCC发动机超燃模态下的点火和燃烧性能,进行了地面直连试验。采用中心支板火箭与小支板组喷注相结合的方式作为点火和火焰稳定方式,并对燃料喷注方案进行了研究。试验与数值模拟结果表明,采用这种点火方式能实现轴对称结构RBCC发动机的可靠点火和稳定燃烧。二次燃料采取多级喷注的方式能充分利用流道中的氧气,实现较充分的燃烧,但应控制燃料喷注比例。双支板组的加入,能促进燃料与中心空气流的充分掺混,提升燃烧效率,获得较优的燃烧性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号