首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
陈弈澄  齐瑞云  张嘉芮  王焕杰 《航空学报》2019,40(7):322827-322827
针对采用太阳帆、太阳电混合小推力推进的航天器,研究了其在日心悬浮轨道的保持控制问题。为解决已有控制方法中未综合考虑内部未建模动态和外部未知扰动的问题,以及进一步提高系统控制性能,设计了一种高性能滑模控制策略。首先,考虑模型不确定性,建立了混合小推力航天器在日心悬浮轨道柱面坐标系的动力学方程;其次,基于改进型条件积分滑模面和径向基(RBF)神经网络设计了控制律,结合自适应方法在线估计不确定参数;接着,将求取的虚拟控制量在推进剂最优条件下转换成实际控制量,即太阳帆姿态角和太阳电推进力;最后,数值仿真验证了上述设计方法提高了系统鲁棒性,减小了轨道位置超调,并且混合推进相比于单一太阳帆推进,在更短收敛时间内控制精度提高了4个数量级,相比于单一太阳电推进,一年可以节省约89.6%的推进剂。  相似文献   

2.
为了提升自动变桨距螺旋桨电推进系统的整体效率,引入最优功率控制规律:自动变桨距螺旋桨电推进系统可根据飞行工况和推力需求,同时调节桨距角和螺旋桨转速两个变量,最终获得一组桨距角和螺旋桨转速的组合,使得推进系统在满足推力需求的情况下实现最小的功率消耗,最终达成飞行任务剖面内最小能耗控制的目标。为了验证方法的有效性,针对同一电推进系统,分别采用最优功率控制规律和恒速控制规律完成相同的飞行任务剖面,获得了两种控制规律下的螺旋桨推进效率、电动机效率、电推进系统总效率和电推进系统能耗数据。结果证明:相较于恒速控制规律,最优功率控制规律能够有效的提升电推进系统效率并降低能耗,完成相同飞行任务剖面的能耗降低6.3%左右。  相似文献   

3.
利用考虑行星际磁场作用的磁流体动力学模型,建立了磁帆三维数值模拟方法,对计算方法的可靠性进行了验证,发现了线圈尾部的磁重联现象,研究了太阳风来流速度、等离子体离子数密度以及攻角对磁帆推进性能的影响。得出以下结论:不同速度、不同离子数密度的太阳风主要通过改变z方向电流的大小改变洛伦兹力,进而影响磁帆的推进性能:太阳风离子数密度恒定时,随着来流速度由30 km/s逐渐增大至75 km/s,z方向电流最大值由4 205 A/m2增至14 709 A/m2,磁帆所受推力由3.39 N增至13.40 N;太阳风来流速度恒定时,随着离子数密度由1.8×1019 m-3增大至4.5×1019 m-3,z方向电流最大值由6 039 A/m2增至10 585 A/m2,磁帆所受推力由6.62 N增至12.27 N。磁帆攻角变化,主要通过磁场构型的变化影响磁帆推进性能:攻角为0°和90°时的磁层半径分别为0.14 m和0.18 m,...  相似文献   

4.
针对航天器平动点轨道保持问题,研究了含有反射率控制设备(RCD)的太阳帆航天器在日地系共线人工平动点处的轨道保持与控制,同时降低因频繁改变航天器姿态所带来的振动问题。首先,基于太阳帆圆型限制性三体问题,计算了RCD型太阳帆人工平动点位置,给出了太阳帆共线人工平动点三阶Halo轨道,并将其作为参考轨道;然后,将太阳帆动力学方程线性化,采用跟踪控制输出的方法对线性模型进行控制;最后,通过合理选择控制变量矩阵,将控制律代入非线性模型中进行轨道保持控制。仿真结果表明,通过控制RCD太阳帆反射率设备参数及姿态角,实现了长时间的Halo轨道保持,同时大幅减小了太阳帆姿态角的改变,从而减小了帆面振动,为太阳帆航天器长期轨道任务的实现提供了良好的理论依据。  相似文献   

5.
In recent years, the lunar explorer programs, suspended for a long time, have resumed again with the rapid development of low cost and high-level technologies. As a result, several nations have made a success of lunar exploration programs with their own orbiters. Unlike a satellite orbiting the earth, the optimal design of an onboard propulsion system of a lunar orbiter is a major issue because it is not simple to make the orbiter arrive accurately at another planet far from the earth. Hence, a close attention is required to select and develop an appropriate type of the onboard propulsion system based on given mission requirements of a lunar orbiter. To do this, this study first surveys several lunar orbiters launched since 1990 and their major mission requirements. Then, it summarizes the technical trends of the onboard propulsion systems of the recent lunar orbiters and their key design and performance specifications through trade-off studies. By comparing these features, the present study investigates which lunar mission requirements are critically important, and how they can effect on the overall performance of an onboard propulsion system. Based on these investigations the major objective of the present study intends ultimately to set up a fundamental baseline in selecting and developing an appropriate type of onboard propulsion system of a lunar orbiter.  相似文献   

6.
The present investigation points out the potential of continuously propelled spacecraft for piloted Mars missions and compares them to impulsive propulsion (chemical and nuclear thermal) and ballistic trajectories. Although the results are related to piloted Mars missions, the stated issues raised hold true for a broad range of space missions. It is demonstrated that the use of impulsive propulsion leads to inflexible missions and may result in long total mission durations. Meanwhile, the use of continuous electric propulsion not only guarantees short total mission durations of Mars missions with moderate masses but also results in highly flexible missions. These criteria can be met with a continuous electric propulsion system that provides a thrust level of 100 N and 3000 s of specific impulse. Great potential lies in electric hybrid thrusters. The high-power, two-stage hybrid plasma thruster TIHTUS is currently being developed at the Institute of Space Systems (IRS). Its technology including preliminary laboratory testing results are presented.  相似文献   

7.
《中国航空学报》2023,36(5):223-238
CubeSats have attracted more research interest recently due to their lower cost and shorter production time. A promising technology for CubeSat application is atmosphere-breathing electric propulsion, which can capture the atmospheric particles as propulsion propellant to maintain long-term mission at very low Earth orbit. This paper designs an atmosphere-breathing electric propulsion system for a 3 U CubeSat, which consists of an intake device and an electric thruster based on the inductively coupled plasma. The capture performance of intake device is optimized considering both particles capture efficiency and compression ratio. The plasma source is also analyzed by experiment and simulation. Then, the thrust performance is also estimated when taking into account the intake performance. The results show that it is feasible to use atmosphere-breathing electric propulsion technology for CubeSats to compensate for aerodynamic drag at lower Earth orbit.  相似文献   

8.
《中国航空学报》2023,36(5):125-144
Solar sail technology has been proposed and developed for space explorations with advantages of low launch cost, no-propellant consumption, and continuous thrust, which has great potentials in earth polar detection, interstellar explorations and etc. The development of solar sail has made significant progress in structural design, manufacturing, materials, orbit transfer, and stability control in the past few decades, which makes meaningful contributions to astronomy, physics, and aerospace science. Technological breakthroughs of Solar Radiation Pressure (SRP) propulsion and interstellar transfer have been achieved in current solar sail missions. However, there are still many challenges and problems need to be solved. This paper attempts to summarize the research schemes and potential applications of solar sailing in space missions from the viewpoint of key technologies, so as to provide an overall perspective for researchers in this field. Analyses of the key technologies of solar sailing system design are provided. Finally, challenges and prospective development of solar sailing are discussed.  相似文献   

9.
In the restricted three-body problem, the traditional Lagrange points L1 and L2 are the only equilibrium points near the asteroid 243 Ida. The thrust generated by a solar sail over a spacecraft enables the existence of new artificial equilibrium points, which depend on the position of the spacecraft with respect to the asteroid and the attitude of the solar sail. Such equilibrium points generate new spots to observe the body from above or below the plane of motion. Such points are very good observational locations due to their stationary condition. This work provides a preliminary analysis to observe Ida through the use of artificial equilibrium points as spots combined with transfer maneuvers between them. Such combination can be used to observe the asteroid from more different points of view in comparison to fixed ones. The analyses are made for a spacecraft equipped with a solar sail and capable of performing bi-impulsive maneuvers. The solar radiation pressure is used both to maintain the equilibrium condition and to reduce the costs of the transfers and/or to create transfers with longer duration. This is a new aspect of the present research, because it combines the continuous thrust with initial and final small impulses, which are feasible for most of the spacecraft, because the magnitudes of the impulses are very low. These combined maneuvers may reduce the transfer times of the maneuvers in most of the cases, compared with the maneuvers based only on continuous thrust. Several options involved in these transfers are shown, like to minimize the fuel spent (Δv) as a function of the transfer time or to extend the duration of the travel between the points. Extended transfer times can be useful when observations are required during the transfers.  相似文献   

10.
This article proposes a multidisciplinary design and optimization (MDO) strategy for the conceptual design of a multistage ground-based interceptor (GBI) using hybrid optimization algorithm, which associates genetic algorithm (GA) as a global optimizer with sequential quadratic programming (SQP) as a local optimizer. The interceptor is comprised of a three-stage solid propulsion system for an exoatmospheric boost phase intercept (BPI). The interceptor's duty is to deliver a kinetic kill vehicle (KKV) to the optimal position in space to accomplish the mission of intercept. The modules for propulsion, aerodynamics, mass properties and flight dynamics are integrated to produce a high fidelity model of the entire vehicle. The propulsion module comprises of solid rocket motor (SRM) grain design, nozzle geometry design and performance prediction analysis. Internal ballistics and performance prediction parameters are calculated by using lumped parameter method. The design objective is to minimize the gross lift off mass (GLOM) of the interceptor under the mission constraints and performance objectives. The proposed design and optimization methodology provide designers with an efficient and powerful approach in computation during designing interceptor systems.  相似文献   

11.
Dawn??s ion propulsion system (IPS) is the most advanced propulsion system ever built for a deep-space mission. Aside from the Mars gravity assist it provides all of the post-launch ??V required for the mission including the heliocentric transfer to Vesta, orbit capture at Vesta, transfer to various Vesta science orbits, escape from Vesta, the heliocentric transfer to Ceres, orbit capture at Ceres, and transfer to the different Ceres science orbits. The ion propulsion system provides a total ??V of nearly 11 km/s, comparable to the ??V provided by the 3-stage launch vehicle, and a total impulse of 1.2×107 N?s.  相似文献   

12.
《中国航空学报》2020,33(8):2176-2188
This paper describes the general optimization design method of Solar-Powered Unmanned Aerial Vehicle which priority considering propulsion system planning. Based on the traditional solar powered aircraft design method, the propulsion system top-level target parameters which affect the path planning are integrated into the general optimization design. According to the typical mission requirements of Solar-Powered Unmanned Aerial Vehicle, considering the design variables such as wing area, aspect ratio, design mission date and so on, the general optimization is carried out with the minimum aircraft weight as the optimization objective. The influence of wing area and aspect ratio on the optimal design results is analyzed and compared with the traditional design method. The results show that the general design method of Solar-Powered Unmanned Aerial Vehicle for priority considering propulsion system can greatly reduce the electricity demand of energy storage battery, greatly reduce the aircraft weight of Solar-Powered Unmanned Aerial Vehicle.  相似文献   

13.
A Cubesat mission with a deployable solar sail of 5 meter by 5 meter in a sun-synchronous low earth orbit is analyzed to demonstrate solar sailing using active attitude stabilization of the sail panel. The sail panel is kept parallel to the orbital plane to minimize aerodynamic drag and optimize the orbit inclination change caused by the solar pressure force normal to the sail surface. A practical control system is proposed, using a combination of small 2-dimensional translation of the sail panel and 3-axis magnetic torquing which is proved to have sufficient control authority over the gravity gradient and aerodynamic disturbance torques. Miniaturized CMOS cameras are used as sun and nadir vector attitude sensors and a robust Kalman filter is used to accurately estimate the inertially referenced body rates from only the sun vector measurements. It is shown through realistic simulation tests that the proposed control system, although inactive during eclipse, will be able to stabilize the sail panel to within ±2° in all attitude angles during the sunlit part of the orbit, when solar sailing is possible.  相似文献   

14.
赖承祺  顾左  宋莹莹  王蒙  郭伟龙  吴辰宸 《推进技术》2019,40(10):2183-2189
为预估与提高航天器有效载荷能力,结合航天运输系统理论与离子推力器放电模型,对深空探测任务中以离子电推进系统为主要动力来源的航天器有效载荷能力进行了分析。通过理论推导,构建并揭示了有效载荷分数与深空探测任务参数和电推进系统性能参数的函数关系与潜在联系。结果表明:动力装置单位质量越小,航天器所能达到的最佳有效载荷分数越大;有效载荷分数的高低与离子引出份额、原初电子利用率参数的大小以及任务时间的长短呈正相关;当离子电推进系统可以达到更高的载荷比时,则需要更高的工质利用率作为支持。  相似文献   

15.
A technique by which the trajectory optimization problem can be formulated to include the trajectory sensitivity functions in the performance index is presented. It is shown that an explicit steering law, which can be derived for the upper atmospheric flight of a vehicle, is a function of the sensitivity state, adjoint vectors, and the parameters of the chosen trajectory dynamics. The new steering law is compared with the one without sensitivity considerations. A computational method is presented to implement the new steering law.  相似文献   

16.
The objective of this paper is to analyse the impact of mission requirements and constraints on both the optimum vehicle design and the effects on flight path selection for two types of reusable two-stage-to-orbit launch vehicles. The first vehicle type considered provides horizontal take-off and landing capabilities and is intended to be propelled by an airbreathing propulsion system during stage 1 flight. The second vehicle type assumes a vertical launch and is accelerated by a rocket propulsion system during the booster stage ascent flight. The analysis employs a design tool for simultaneous system and mission optimization. It consists of a CAD-based preliminary vehicle design tool, aerodynamic and aerothermodynamic calculation software, flight simulation programs, and a two-level decomposition optimization algorithm enabling simultaneous system and flight optimization. The results to be presented show that the cruise flight requirement for an European launched mission of the airbreathing vehicle results in a loss of 60 % payload mass as compared to a mere accelerated ascent for a near equatorial mission into the same target orbit assuming constant take-off mass. The strong dependencies of mission requirements on both the optimal vehicle design and the ascent performance are determined for the rocket-powered vehicle type by varying the inclination and altitude of the target orbit.  相似文献   

17.
变流器是螺旋通道磁流体推进器推进通道中重要的水力部件之一,变流器的设计影响着推进器的水力性能和推进性能。提出了基于四阶贝塞尔曲线的螺旋通道变流器三维建模方法,明确了变流器的结构参数;采用正交实验设计方法,选用五因素四水平正交设计表基于CFD方法分析了变流器结构参数对螺旋通道水动力学性能的影响及其变化规律。分析结果表明螺旋通道导流器会大幅减小水力损失,整流器会增加水力损失,但能提高整流效果。分析结果可以为螺旋通道磁流体推进器的水力优化及推进性能提升提供有意义的指导作用。  相似文献   

18.
To reduce the propulsion system installation thrust loss under high angle of attack maneuvering, a control method based on real-time optimization of the integrated aeropropulsion is proposed. Firstly, based on data fitting and physical principle, an integrated onboard model of propulsion system is established, which can calculate various performance parameters of the propulsion system in real time, and has high accuracy and real-time performance. Secondly, to improve the compatibility of optimiz...  相似文献   

19.
宋俊 《航空动力学报》2022,37(7):1495-1502
参考一种简化的、解析近似的计算模型,以地球到火星的对接任务和往返任务为例,对核聚变等离子体推进器性能关键参数如推进系统质量、比冲、任务时间、有效载荷份额及比功率等进行分析,得出了任务时间和有效载荷质量份额与聚变堆芯输出功率、推进器结构质量和比冲的依赖关系。在此基础上,结合核聚变地面商业堆的相关进展,对现有的技术做合理适当外推,理论计算表明:飞行任务能够在1~2个月内达到目的星球同时可携带超过10%的有效载荷份额,并提出了未来核聚变空间推进器的初步参数方案和设计构想,总体上能够为未来核聚变空间推进技术的发展提供一定的参考。   相似文献   

20.
张津 《航空动力学报》1989,4(1):11-16,87
本文应用我们所建立的推进系统性能计算程序,研究进气道-发动机-喷管匹配,分析了各种设计参数和使用条件对推进系统性能的影响,并把推进系统和飞机组成一个系统,进行发动机最佳循环参数的优选。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号