首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied a number of interplanetary space mission scenarios for space weather research and operational forecasting experiments and concluded that a spacecraft should be deployed at the L5 point of the Sun–Earth system to enable remote sensing of the Sun and interplanetary space and in situ measurements of solar wind plasma and high energy solar particle events. The L5 point is an appropriate position for making side-view observations of geo-effective coronal mass ejections and interplanetary plasma clouds.Here, we describe briefly the mission plan and the ongoing BBM development of important subsystems such as the wide field coronal imager (WCI) and the mission processor. The WCI will have a large CCD array with 16-bit sampling, to achieve a dynamic range of several thousand in order to detect very small deviations due to plasma clouds under zodiacal light contaminations a hundred times brighter than the clouds. The L5 mission we propose will surely contribute to the construction of an international space weather observation network.  相似文献   

2.
Solar Ring (SOR) is a proposed space science mission to monitor and study the Sun and inner heliosphere from a full 360° perspective in the ecliptic plane. It will deploy-three 120°-separated spacecraft on the 1-AU orbit. The first spacecraft, S1, locates 30° upstream of the Earth, the second, S2, 90° downstream, and the third, S3, completes the configuration. This design with necessary science instruments, e.g., the Doppler-velocity and vector magnetic field imager, wide-angle coronagraph, and in-situ instruments, will allow us to establish many unprecedented capabilities: (1) provide simultaneous Doppler-velocity observations of the whole solar surface to understand the deep interior, (2) provide vector magnetograms of the whole photosphere — the inner boundary of the solar atmosphere and heliosphere, (3) provide the information of the whole lifetime evolution of solar featured structures, and (4) provide the whole view of solar transients and space weather in the inner heliosphere. With these capabilities, Solar Ring mission aims to address outstanding questions about the origin of solar cycle, the origin of solar eruptions and the origin of extreme space weather events. The successful accomplishment of the mission will construct a panorama of the Sun and inner-heliosphere, and therefore advance our understanding of the star and the space environment that holds our life.  相似文献   

3.
The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) on the NASA Solar Terrestrial Relations Observatory (STEREO) mission is a suite of remote sensing instruments consisting of an extreme ultraviolet imager, two white light coronagraphs, and a heliospheric imager. Two spacecraft with identical instrumentation will obtain simultaneous observations from viewpoints of increasing separation in the ecliptic plane. In support of the STEREO mission objectives, SECCHI will observe coronal mass ejections from their birth at the Sun, through the outer corona, to their impact at Earth. The SECCHI program includes a coordinated effort to develope magneto-hydrodynamic models and visualization tools to interpret the images that will be obtained from the two spacecraft viewpoints. The resulting three-dimensional analysis of CMEs will help to resolve some of the fundamental outstanding questions in solar physics.  相似文献   

4.
The interstellar heliopause probe (IHP) is one of ESA’s technology reference studies (TRS). The TRS aim to focus the development of strategically important technologies of relevance to future science missions by studying technologically demanding and scientifically interesting missions that are currently not part of the science mission programme.

Equipped with a highly integrated payload suite (HIPS), the IHP will perform in situ exploration of the heliopause and the heliospheric interface. The HIPS, which is a standard element in all TRSs, miniaturize payloads through resource reduction by using miniaturized components and sensors, and by sharing common structures and payload functionality.

To achieve the scientific requirements of the mission, the spacecraft is to leave the heliosphere as close to the heliosphere nose as possible and reach a distance of 200 AU from the Sun within 25 years. This is possible by using a trajectory with two solar flybys and a solar sail with characteristic acceleration of 1.1 mm/s2, which corresponds to a 245 × 245 m2 solar sail and a sail thickness of 1–2 μm. The trajectory facilitates a modest sail design that could potentially be developed in a reasonable timeframe.

In this paper, an update to the results of studies being performed on this mission will be given and the current mission baseline and spacecraft design will be described. Furthermore, alternative solar sail systems and enabling technologies will be discussed.  相似文献   


5.
The Solar Polar ORbit Telescope (SPORT) project for space weather mission has been under intensive scientific and engineering background studies since it was incorporated into the Chinese Space Science Strategic Pioneer Project in 2011.SPORT is designed to carry a suite of remote-sensing and in-situ instruments to observe Coronal Mass Ejections (CMEs),energetic particles,solar high-latitude magnetism,and the fast solar wind from a polar orbit around the Sun. The first extended view of the polar regions of the Sun and the ecliptic enabled by SPORT will provide a unique opportunity to study CME propagation through the inner heliosphere,and the solar high-latitude magnetism giving rise to eruptions and the fast solar wind.Coordinated observations between SPORT and other spaceborne/ground-based facilities within the International Living With a Star (ILWS) framework can significantly enhance scientific output.SPORT is now competing for official selection and implementation during China's 13th Five-Year Plan period of 2016-2020.   相似文献   

6.
The STEREO mission, launched on October 25 2006, will provide the first stereoscopic view of the Sun and its magnetic environment. A suite of identical instruments on two continuously separating spacecraft will monitor the onset of solar eruptive phenomena, and track them as the shocks and ejected material propagate through the interplanetary medium (IPM). The combination of remote sensing and in situ instrumentation will provide new insights into the onset of eruptions, the extent of their effects on the global structure of the low corona, and their subsequent evolution through the IPM. These observations will provide new constraints on the processes involved and allow us to distinguish between competing models of eruptive solar phenomena.  相似文献   

7.
The Aditya-L1 is first Indian solar mission scheduled to be placed in a halo orbit around the first Lagrangian point (L1) of Sun-Earth system in the year 2018–19. The approved scientific payloads onboard Aditya-L1 spacecraft includes a Fluxgate Digital Magnetometer (FGM) to measure the local magnetic field which is necessary to supplement the outcome of other scientific experiments onboard. The in-situ vector magnetic field data at L1 is essential for better understanding of the data provided by the particle and plasma analysis experiments, onboard Aditya-L1 mission. Also, the dynamics of Coronal Mass Ejections (CMEs) can be better understood with the help of in-situ magnetic field data at the L1 point region. This data will also serve as crucial input for the short lead-time space weather forecasting models.The proposed FGM is a dual range magnetic sensor on a 6?m long boom mounted on the Sun viewing panel deck and configured to deploy along the negative roll direction of the spacecraft. Two sets of sensors (tri-axial each) are proposed to be mounted, one at the tip of boom (6?m from the spacecraft) and other, midway (3?m from the spacecraft). The main science objective of this experiment is to measure the magnitude and nature of the interplanetary magnetic field (IMF) locally and to study the disturbed magnetic conditions and extreme solar events by detecting the CME from Sun as a transient event. The proposed secondary science objectives are to study the impact of interplanetary structures and shock solar wind interaction on geo-space environment and to detect low frequency plasma waves emanating from the solar corona at L1 point. This will provide a better understanding on how the Sun affects interplanetary space.In this paper, we shall give the main scientific objectives of the magnetic field experiment and brief technical details of the FGM onboard Aditya-1 spacecraft.  相似文献   

8.
The SOHO (SOlar and Heliospheric Observatory) satellite was launched on December 2nd 1995. After arriving at the Earth-Sun (L1) Lagrangian point on February 14th 1996, it began to continuously observe the Sun. As one of the instruments onboard SOHO, the EIT (Extreme ultraviolet Imaging Telescope) images the Sun's corona in 4 EUV wavelengths. The He II filter at 304 Å images the chromosphere and the base of the transition region at a temperature of 5 − 8 × 104 K; the Fe IX–X filter at 171 Å images the corona at a temperature of 1.3 × 106 K; the Fe XII filter at 195 Å images the quiet corona outside coronal holes at a temperature of 1.6 × 106 K; and the Fe XV filter at 284 Å images active regions with a temperature of 2.0 × 106 K. About 5000 images have been obtained up to the present. In this paper, we describe also some aspects of the telescope and the detector performance for application in the observations. Images and movies of all the wavelengths allow a look at different phenomena present in the Sun's corona, and in particular, magnetic field reconnection.  相似文献   

9.
本文旨在介绍一项具有重大科学意义和应用价值的深空探测任务构想.该任务将对驱动恒星大尺度爆发过程的中心结构(即磁重联电流片)进行抵近(原位)探测,主要目的是详细研究发生在离地球最近的恒星—太阳上的大尺度磁重联过程的精细物理特征,揭示太阳系中最为剧烈的能量释放过程(即太阳爆发或太阳风暴)的奥秘.该任务的科学目标:磁重联过程...  相似文献   

10.
The solar and heliospheric instruments proposed to study the solar atmosphere at close distances and the inner heliosphere onboard the Interhelioprobe mission are described. Remote observations of the solar surface combined with in-situ measurements at optimum orbital parameters (quasi-corotation with the Sun, multiple positions with respect to the Sun-Earth line, and inclination to the ecliptic plane) provide new information on the fine structure and dynamics of the solar surface, solar flares and ejections, solar corona, and solar wind.  相似文献   

11.
It is established that the large-scale and global magnetic fields in the Sun's atmosphere do not change smoothly, and long-lasting periods of gradual variations are superseded by fast structural changes of the global magnetic field. Periods of fast global changes on the Sun are accompanied by anomalous manifestations in the interplanetary space and in the geomagnetic field. There is a regular recurrence of these periods in each cycle of solar activity, and the periods are characterized by enhanced flaring activity that reflects fast changes in magnetic structures. Is demonstrated, that the fast changes have essential influencing on a condition of space weather, as most strong geophysical disturbances are connected to sporadic phenomena on the Sun. An explanation has been offered for the origin of anomalous geomagnetic disturbances that are unidentifiable in traditionally used solar activity indices. Is shown, main physical mechanism that leads to fast variations of the magnetic fields in the Sun's atmosphere is the reconnection process.  相似文献   

12.
Imaging interplanetary CMEs at radio frequency from solar polar orbit   总被引:1,自引:0,他引:1  
Coronal mass ejections (CMEs) represent a great concentration of mass and energy input into the lower corona. They have come to be recognized as the major driver of physical conditions change in the Sun–Earth system. Consequently, observations of CMEs are important for understanding and ultimately predicting space weather conditions. This paper discusses a proposed mission, the Solar Polar Orbit Radio Telescope (SPORT) mission, which will observe the propagation of interplanetary CMEs to distances of near 0.35 AU from the Sun. The orbit of SPORT is an elliptical solar polar orbit. The inclination angle between the orbit and ecliptic plane should be about 90°. The main payload on board SPORT will be an imaging radiometer working at the meter wavelength band (radio telescope), which can follow the propagation of interplanetary CMEs. The images that are obtained by the radio telescope embody the brightness temperature of the objectives. Due to the very large size required for the antenna aperture of the radio telescope, we adopt interferometric imaging technology to reduce it. Interferometric imaging technology is based on indirect spatial frequency domain measurements plus Fourier transformation. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind ion instrument, an energetic particle detector, a magnetometer, a wave detector and a solar radio burst spectrometer.  相似文献   

13.
14.
太阳10.7cm射电流量(F10.7)是反映太阳整体活动的重要指标,其主要源头是日面活动区.F10.7指数与日面活动区具有显著的相关性,且不同面积的活动区与F10.7并不遵循相同的线性关系.为进一步提高F10.7预报的准确性,利用日面活动区面积与F10.7的相关性,依据面积大小分类,提出F10.7的预报公式并进行验证.采用2008-2018年SWPC (Space Weather Prediction Center)公布的活动区面积数据和CSWFC (Canadan Space Weather Forecast Center)公布的F10.7实测数据计算预报公式系数,利用高年(2003年)和低年(1997年)的F10.7预报验证其结果.研究结果表明,预报结果与实测值的相关系数分别为0.9318和0.9295,二者皆优于SWPC同时期的预报结果(相关系数分别为0.9186和0.8771).本研究首次基于活动区的变化预测了F10.7,提高了F10.7预测的准确性.   相似文献   

15.
The scientific rationale of the Solar Orbiter is to provide, at high spatial (35 km pixel size) and temporal resolution, observations of the solar atmosphere and unexplored inner heliosphere. Novel observations will be made in the almost heliosynchronous segments of the orbits at heliocentric distances near 45 R and out of the ecliptic plane at the highest heliographic latitudes of 30° – 38°. The Solar Orbiter will achieve its wide-ranging aims with a suite of sophisticated instruments through an innovative design of the orbit. The first near-Sun interplanetary measurements together with concurrent remote observations of the Sun will permit us to determine and understand, through correlative studies, the characteristics of the solar wind and energetic particles in close linkage with the plasma and radiation conditions in their source regions on the Sun. Over extended periods the Solar Orbiter will deliver the first images of the polar regions and the side of the Sun invisible from the Earth.  相似文献   

16.
The Space Weather Explorer – KuaFu mission will provide simultaneous, long-term, and synoptic observations of the complete chain of disturbances from the solar atmosphere to the geospace. KuaFu-A (located at the L1 liberation point) includes Coronal Dynamics Imagers composed of a Lyman-α coronagraph (from 1.15 to 2.7 solar radii) and a white light coronagraph (out to 15 solar radii), in order to identify the initial sources of Coronal Mass Ejections (CMEs) and their acceleration profiles. The difficulty of observing the lower corona should not be underestimated since instrumental stray light remains a critical issue in the visible because of the low contrast of the corona with respect to the Sun. Observing the corona in the Lyman-α line is a valid alternative to white light observations. This approach takes advantage of both the intrinsic higher contrast of the corona with respect to the solar disk in this line compared to the visible, and the absence of F-corona at 121.6 nm. Furthermore, it has been convincingly shown that the coronal structures seen in Lyman-α correspond to those seen in the visible and which result from Thomson scattering of the coronal ionized gas. This is because the plasma is still collisional in the lower corona so that the hydrogen neutral atoms are coupled to the protons. A classical, all-reflecting internally-occulted Lyot coronagraph is required so as to preserve the image quality down to the inner limit of the field-of-view. A narrow band interference filter located in a collimated beam allows isolating the Lyman-α line. The visible coronagraph will adopt the approach of a single instrument having a large field-of-view extending from 2.5 to 15 solar radii. Such a design is based on refractive externally-occulted coronagraphs built for recent past missions, essentially the LASCO-C2 and C3 instruments and the SECCHI/COR 2 of the STEREO mission, which is itself a combination of the C2 and C3 instruments.  相似文献   

17.
This paper gives a short account of the development of the living with a star Sentinels element. The Sentinels element is the heliospheric portion of the NASA program focused on improving our understanding of geo-effective events in the Sun–Earth connected system. The primary objectives of Sentinels are the investigation of the initiation and evolution of solar transients in the inner heliosphere, the acceleration and propagation of solar energetic particles, and the long term climatic change and structure of the inner heliosphere into which all of these geo-effective structures erupt. Due to the large volume of space to be covered, Sentinels will have to rely on, besides a dedicated mission, the observations of spacecraft from other programs of NASA and international partners along with a robust theoretical and modeling effort. The upcoming Sentinels Science and Technology Definition Team will develop specific details of this element.  相似文献   

18.
Calculated intensities of the Fe X-ray lines due to transitions 2p6 − 2p53d lines (near 15 Å) and 2p6 − 2p53s lines (near 17 Å) are compared with measured line intensities in solar and tokamak spectra. For the solar spectra, temperature Te is obtained from the ratio of the Fe 16.776 Å line to a nearby Fe line. We find excellent agreement for all the major Fe line features in the 15–17 Å region except the Fe 15.015 Å line, the observed flux of which is less than the theoretical by a factor f. We find that f strongly depends on the heliocentric angle θ of the emitting region, being smallest (0.2) when the region is nearest Sun centre, but nearly 1 near the limb. Attributing this to resonance scattering, we are able to deduce the path length and electron density from the observations. Possible application to stellar active regions is given.  相似文献   

19.
The Sun is the nearest stellar and astrophysical laboratory, available for detailed studies in several fields of physics and astronomy. It is a sphere of hot gas with a complex and highly variable magnetic field which plays a very important role. The Sun shows an unprecedented wealth of phenomena that can be studied extensively and to the greatest detail, in a way we will never be in a position to study in other stars. Humans have studied the Sun for millennia and after the discovery of the telescope they realized that the Sun varies with time, i.e., solar activity is highly variable, in tune scales of millennia to seconds. The study of these variabilities helps us to understand how the Sun works and how it affects the interplanetary medium, Earth and the other planets. Solar power varies substantially and greatly affects the Earth and humans. Solar activity has several important periodicities, and quasi-periodicities. Knowledge of these periodicities helps us to forecast, to an extent, solar events that affect our planet. The most prominent periodicity of solar activity is the one of 11 years. The actual period is in fact 22 years because the magnetic field polarity of the Sun has to be taken into account. The Sun can be considered as a non-linear RLC electric circuit with a period of 22 years. The RLC equivalent circuit of the Sun is a van der Pol oscillator and such a model can explain many solar phenomena, including the variability of solar energy with time. Other quasi-periodicities such as the ones of 154 days, the 1.3, 1.7 to 2 years, etc., some of which might be harmonics of the 22 year cycle are also present in solar activity, and their study is very interesting and important since they affect the Earth and human activities. The period of 27 days related to solar rotation plays also a very important role in geophysical phenomena. It is noticeable that almost all periodicities are highly variable with time as wavelet analysis reveals. It is very important for humans to be in a position to forecast solar activity during the next hour, day, year, decade and century, because solar phenomena affect life on Earth and such predictions will help politicians and policy makers to better serve their countries and our planet.  相似文献   

20.
The atmosphere of the Sun is highly structured and dynamic in nature. From the photosphere and chromosphere into the transition region and the corona plasma-β changes from above to below one, i.e., while in the lower atmosphere the energy density of the plasma dominates, in the upper atmosphere the magnetic field plays the governing role – one might speak of a “magnetic transition”. Therefore the dynamics of the overshooting convection in the photosphere, the granulation, is shuffling the magnetic field around in the photosphere. This leads not only to a (re-)structuring of the magnetic field in the upper atmosphere, but induces also the dynamic reaction of the coronal plasma, e.g., due to reconnection events. Therefore the (complex) structure and the interaction of various magnetic patches is crucial to understand the structure, dynamics and heating of coronal plasma as well as its acceleration into the solar wind.

The present article will emphasize the need for three-dimensional modeling accounting for the complexity of the solar atmosphere to understand these processes. Some advances on 3D modeling of the upper solar atmosphere in magnetically closed as well as open regions will be presented together with diagnostic tools to compare these models to observations. This highlights the recent success of these models which in many respects closely match the observations.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号