首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The MAX family of constant-false-alarm-rate (CFAR) detectors is introduced as a generalization of the greatest of CFAR (GO-CFAR) or MX mean-level detector (MX-MLD). Members of the MAX family use local estimators based on order statistics and generate both a near-range and a far-range noise-level estimate. Local estimates are always combined through a maximum operation; this insures false-alarm control at clutter edges. At the same time, order-statistic-based estimators result in a high-resolution detector. A complete detection analysis is provided for SWII targets and a reference channel contaminated by large outliers. Results are presented for the MX censored MLD (MX-CMLD) operating in clutter. The MX order statistic detector (MX-OSD) based on only a single-order statistic per window, is analyzed, and curves showing the required threshold, CFAR loss, optimum censoring point, and signal-to-noise ratio (SNR) loss in the presence of outliers are given. Simulations are used to compare the dynamic responses of various MX-OSD detectors in a clutter and a multiple-target environment  相似文献   

2.
Nonparametric Radar Extraction Using a Generalized Sign Test   总被引:3,自引:0,他引:3  
A nonparametric procedure used in a constant false alarm rate (CFAR) radar extractor for detecting targets in a background of noise with unknown statistical properties is described. The detector is based on a generalization of the well-known two-sample sign test and thus requires a set of reference noise observations in addition to the set of observations being tested for signal presence. The detection performance against Gaussian noise is determined for a finite number of observations and asymptotically, for both nonfluctuating and pulse-to-pulse Rayleigh fluctuating target statistics. It is noted that the performance loss, as compared to the optimum parametric detector, depends critically on the number of reference noise observations available when the number of hits per target is not large. In the same case a much larger loss is also found for a pulse-to-pulse fluctuating target even though the asymptotic loss is the same as for a nonfluctuating target. A comparison is finally made with a detector based on the Mann-Whitney test, which usually is considered to be one of the better nonparametric procedures for the two-sample case.  相似文献   

3.
韦北余  朱岱寅  吴迪 《航空学报》2015,36(5):1585-1595
对超高频(UHF)波段多通道合成孔径雷达(SAR)动目标检测技术进行研究,解决了长相干积累时间导致动目标在方位向散焦严重的问题。采用分块自聚焦技术对多通道SAR地面移动目标指示(GMTI)系统自适应杂波抑制后的SAR图像进行处理,改善杂波抑制后的SAR图像中动目标的聚焦情况,增强动目标与周围剩余杂波的对比度,进而提高恒虚警率(CFAR)检测的性能。与传统杂波抑制后直接进行CFAR检测方法相比较,该方法降低了检测虚警概率。实测数据处理结果显示动目标的信杂比明显提高,动目标方位向聚焦成功,证明了该方法的有效性。  相似文献   

4.
Detection of a Distributed Target   总被引:3,自引:0,他引:3  
The influence of increasing range resolution on the detectability of targets with dimensions greater than the resolution cell is studied. An N-cell target model is assumed, which contains k reflecting cells, each reflecting independently according to the same Rayleigh amplitude distribution. It will be referred to as the (N,k) target. Detection based on one transmitted pulse is performed against a background of white normal noise. Detection in stationary clutter is also considered. The optimum detector is obtained but, in view of its complexity, the performance of a simpler detector, the square-law envelope detector with linear integrator (SLEDLI), is analyzed, and a formula for the probability of detection is obtained. Graphs are presented which show the probability of detection as a function of signal-to-noise ratio (SNR) for various values of N k, and false alarm probability. For N/k not too large it is shown that the SLEDLI is near optimum.  相似文献   

5.
无需辅助数据的分布式目标自适应检测器   总被引:1,自引:0,他引:1  
简涛  苏峰  何友  李炳荣  顾雪峰 《航空学报》2011,32(8):1542-1547
在非高斯背景和没有辅助数据的条件下,研究了高分辨率雷达分布式目标的自适应检测问题.首先采用有序检测理论和协方差矩阵的迭代估计方法粗略估计散射点集合,进一步利用迭代估计方法获得协方差矩阵的近似最大似然估计,提出了无需辅助数据的自适应检测器(ADWSD).ADWSD在非高斯背景下具有近似恒虚警率特性,且检测性能远好于修正的...  相似文献   

6.
文章提出了 1种基于双边截断的双参数海上风电站 SAR图像 CFAR检测器 DTCS-TPCFAR,目的是提高在具有多个目标海上区域和石油泄漏区域等环境下对海上风电站的检测性能。DTCS-TPCFAR所提出的双边截断杂波的方法,能够同时消除高强度和低强度异常值的干扰,同时保留真实的杂波样本。通过使用最大似然估计计算双边截断后样本的均值和标准差,然后通过这 2个参数估计值计算出截断阈值,最后再结合指定的虚警率(Probability of False Alarm,PFA)来对测试单元(Test Cell,TC)进行判断,完成最终的目标检测。这也是首次将 CFAR检测器用于检测海上风电站。文章通过 Sentinel-1数据集来验证该方法的有效性。实验结果表明,文章所提出的算法在相同指定虚警率下,具有更高的检测率(Detection Rate,DR)和更低的误报率(False Alarm Rate,FAR)。  相似文献   

7.
A new constant false alarm rate (CFAR) test termed signal-plus-order statistic CFAR (S+OS) using distributed sensors is developed. The sensor modeling assumes that the returns of the test cells of different sensors are all independent and identically distributed In the S+OS scheme, each sensor transmits its test sample and a designated order statistic of its surrounding observations to the fusion center. At the fusion center, the sum of the samples of the test cells is compared with a constant multiplied by a function of the order statistics. For a two-sensor network, the functions considered are the minimum of the order statistics (mOS) and the maximum of the order statistics (MOS). For detecting a Rayleigh fluctuating target in Gaussian noise, closed-form expressions for the false alarm and detection probabilities are obtained. The numerical results indicate that the performance of the MOS detector is very close to that of a centralized OS-CFAR and it performs considerably better than the OS-CFAR detector with the AND or the OR fusion rule. Extension to an N-sensor network is also considered, and general equations for the false alarm probabilities under homogeneous and nonhomogeneous background noise are presented.  相似文献   

8.
Moving target detection via airborne HRR phased array radar   总被引:1,自引:0,他引:1  
We study moving target detection in the presence of temporally and spatially correlated ground clutter for airborne high range resolution (HRR) phased array radar. We divide the HRR range profiles into large range segments to avoid the range migration problems that occur in the HRR radar data. Since each range segment contains a sequence of HRR range bins, no information is lost due to the division and hence no loss of resolution occurs. We show how to use a vector autoregressive (VAR) filtering technique to suppress the ground clutter. Then a moving target detector based on a generalized likelihood ratio test (GLRT) detection strategy is derived. The detection threshold is determined according to the desired false alarm rate, which is made possible via an asymptotic statistical analysis. After the target Doppler frequency and spatial signature vectors are estimated from the VAR-filtered data as if a target were present, a simple detection variable is computed and compared with the detection threshold to render a decision on the presence of a target. Numerical results are provided to demonstrate the performance of the proposed moving target detection algorithm  相似文献   

9.
Spatially distributed target detection in non-Gaussian clutter   总被引:3,自引:0,他引:3  
Two detection schemes for the detection of a spatially distributed, Doppler-shifted target in non-Gaussian clutter are developed. The non-Gaussian clutter is modeled as a spherically invariant random vector (SIRV) distribution. For the first detector, called the non-scatterer density dependent generalized likelihood ratio test (NSDD-GLRT), the detector takes the form of a sum of logarithms of identical functions of data from each individual range cell. It is shown under the clutter only hypothesis, that the detection statistic has the chi-square distribution so that the detector threshold is easily calculated for a given probability of false alarm PF. The detection probability PD is shown to be only a function of the signal-to-clutter power ratio (S/C)opt of the matched filter, the number of pulses N, the number of target range resolution cells J, the spikiness of the clutter determined by a parameter of an assumed underlying mixing distribution, and PF. For representative examples, it is shown that as N, J, or the clutter spikiness increases, detection performance improves. A second detector is developed which incorporates a priori knowledge of the spatial scatterer density. This detector is called the scatterer density dependent GLRT (SDD-GLRT) and is shown for a representative case to improve significantly the detection performance of a sparsely distributed target relative to the performance of the NSDD-GLRT and to be robust for a moderate mismatch of the expected number of scatterers. For both the NSDD-GLRT and SDD-GLRT, the detectors have the constant false-alarm rate (CFAR) property that PF is independent of the underlying mixing distribution of the clutter, the clutter covariance matrix, and the steering vector of the desired signal  相似文献   

10.
为提高导航雷达在复杂环境中的目标检测能力,研究了修正中值(MMD)检测器在导航雷达中的应用,并与经典非参量广义符号(GS)检测器和参量最小选择(SO)检测器的检测结果进行对比。仿真结果表明:GS检测器对海上单一目标有较好的检测性能,但是在多目标环境下的检测性能严重下降;SO检测器虽然对上述环境有较好的检测性能,但是由于杂波包络分布类型难以准确已知,杂波抑制能力较差;MMD检测器在多目标环境下有较好的检测性能和杂波抑制能力。  相似文献   

11.
The performance of multistatic-radar binomial detectors is investigated. Although conceptually similar to the well-knwn "M-out-of-N" detector frequently considered for monostatic systems, the multistatic detector must cope with false alarms generated by target et ghosting as well as by noise threshold crossings. A procedure for deriving the detection statistics of multistatic binomial detectors ors is presented. The procedure is applied to derive the detection probabilities for a spectrum of false alarm probabilities, target densities, and numbers of radar receivers.  相似文献   

12.
A method is presented for selecting the asymptotically optimum sample size M for detecting a sudden change in the statistics of an observed process. The test statistic is assumed to be a sum of M consecutive values of some single sample detector and the optimization criterion is to minimize the mean time to detection MD for a given mean time between false alarms MF. It is shown that for large MF and MD the solution can be expressed as a function of the single variable ?MF? (or alternatively ?MD?) where ? is a measure of the signal-to-noise ratio (SNR).  相似文献   

13.
Sensors like radar or sonar usually produce data on the basis of a single frame of observation: target detections. The detection performance is described by quantities like detection probability Pd and false alarm density f. A different task of detection is formation of tracks of targets unknown in number from data of multiple consecutive frames of observation. This leads to quantities which are of a higher level of abstraction: extracted tracks. This again is a detection process. Under benign conditions (high Pd, low f and well separated targets) conventional methods of track initiation are recommended to solve a simple task. However, under hard conditions the process of track extraction is known to be difficult. We here concentrate on the case of well separated targets and derive an optimal combinatorial method which can be used under hard operating conditions. The method relates to MHT (multiple hypothesis tracking), uses a sequential likelihood ratio test and derives benefit from processing signal strength information. The performance of the track extraction method is described by parameters such as detection probability and false detection rate on track level, while Pd and f are input parameters which relate to the signal-to-noise interference ratio (SNIR), the clutter density, and the threshold set for target detection. In particular the average test lengths are analyzed parametrically as they are relevant for a user to estimate the time delay for track formation under hard conditions  相似文献   

14.
The modified generalized sign test processor is a nonparametric, adaptive detector for 2-D search radars. The detector ranks a sample under test with its neighboring samples and integrates (on a pulse-to-pulse basis) the ranks with a two-pole filter. A target is declared when the integrated output exceeds two thresholds. The first threshold is fixed and yields a 10-6 probability of false alarm when the neighboring samples are independent and identically distributed. The second threshold is adaptive and maintains a low false-alarm rate when the integrated neighboring samples are correlated and when there are nonhomogeneities, such as extraneous targets, in the neighboring cells. Using Monte Carlo techniques, probability of false-alarm results, probability of detection curves, and angular accuracy curves have been generated for this detector. The detector was built and PPI photographs are used to indicate the detector's performance when the radar is operated over land clutter.  相似文献   

15.
This paper provides general models of radar echoes from a target. The rationale of the approach is to consider the echoes as the output of a linear dynamic system driven by white Gaussian noise (WGN). Two models can be conceived to generate N target returns: samples generated as a batch, or sequentially generated one by one. The models allow the accommodation of any correlation between pulses and nonstationary behavior of the target. The problem of deriving the optimum receiver structure is next considered. The theory of "estimator-correlator" receiver is applied to the case of a Gaussian-distributed time-correlated target embedded in clutter and thermal noise. Two equivalent detection schemes are obtained (i. e., the batch detector and the recursive detector) which are related to the above mentioned procedures of generating radar echoes. A combined analytic-numeric method has been conceived to obtain a set of original detection curves related to operational cases of interest. Finally, an adaptive implementation of the proposed processor is suggested, especially with reference to the problem of on-line estimation of the clutter covariance matrix and of the CFAR threshold. In both cases detection loss due to adaptation has been evaluated by means of a Monte Carlo simulation approach. In summary, the original contributions of the paper lie in the mathematical formulation of a powerful model for radar echoes and in the derivation of a large set of detection curves.  相似文献   

16.
为提高海杂波中慢速目标的检测性能,提出了一种基于IMF能量分布重构的目标检测技术。该算法对原始信号尖峰区域经经验模态分解后得到的固有模态函数进行分段数据重构,计算前端IMF分量与后端IMF分量的能量比,并将其输入非参量检测器中进行目标检测。研究表明,相比于海杂波单元,目标单元尖峰区域有更小的前后端IMF分量能量比,适用于慢速目标的检测。  相似文献   

17.
The maximum-mean-level detector (MX-MLD) is a constant false-alarm rate (CFAR) detector designed to eliminate the excessively high false-alarm rate seen with the MLD at the edges of contiguous clutter regions. The concomitant high target suppression effect led M. Weiss (1982) to suggest a censored modification. The authors analyze the detection performance of the maximum-censored-mean-level detector (MX-CMLD). A homogeneous Swerling II target and clutter environment are assumed, and only single-pulse detection is considered. Analytic results apply equally to the MX-MLD and extend previous analysis. Simulation results are presented that demonstrate the qualitative effects of various CFAR detectors in nonhomogeneous clutter environments  相似文献   

18.
Adaptive Detection Algorithms for Multiple-Target Situations   总被引:2,自引:0,他引:2  
The performance of a mean-level detector is considered for the case where one or more interfering target returns are present in the set of cells used in estimating the clutter-plus-noise level. A serious degradation of detection probability is demonstrated for all of the single-pulse Swerling target fluctuation models (i. e., cases 0, 2, and 4). Indeed, for fixed mean radar cross sections of the primary and interfering targets, the probability of detecting the primary target is asymptotic to values significantly less than unity as the signal-to-noise ratios of the returns approach infinity. A class of alternative adaptive detection procedures is proposed and analyzed. These procedures, based on ranking and censoring techniques, maintain acceptable performance in the presence of interfering targets, and require only a minor addition in hardware to a conventional mean-level detector.  相似文献   

19.
The effect of a logarithmic receiver on the detection performance of a radar has been determined by Green by numerical computations for up to 100 pulses integrated. It was further suggested that the loss in decibels as compared to a square-law detector would appear to be proportional to the logarithm of the number of pulses integrated. In this correspondence we show that this ?conjecture? is false, and that the additional loss when N becomes very large approaches a constant value of 2.2 dB.  相似文献   

20.
The classical detection step in a monopulse radar system is based on the sum beam only,the performance of which is not optimal when target is not at the beam center. Target detection aided by the difference beam can improve the performance at this case. However, the existing difference beam aided target detectors have the problem of performance deterioration at the beam center, which has limited their application in real systems. To solve this problem, two detectors are proposed in this paper. Assuming the monopulse ratio is known, a generalized likelihood ratio test(GLRT) detector is derived, which can be used when targeting information on target direction is available. A practical dual-stage detector is proposed for the case that the monopulse ratio is unknown. Simulation results show that performances of the proposed detectors are superior to that of the classical detector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号