首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 15° swept wing with dielectric barrier discharge plasma actuator is designed.Experimental study of flow separation control with nanosecond pulsed plasma actuation is performed at flow velocity up to 40 m/s. The effects of the actuation frequency and voltage on the aerodynamic performance of the swept wing are evaluated by the balanced force and pressure measurements in the wind tunnel. At last, the performances on separation flow control of the three types of actuators with plane and saw-toothed exposed electrodes are compared. The optimal actuation frequency for the flow separation control on the swept wing is detected, namely the reduced frequency is 0.775, which is different from 2-D airfoil separation control. There exists a threshold voltage for the low swept wing flow control. Before the threshold voltage, as the actuation voltage increases, the control effects become better. The maximum lift is increased by 23.1% with the drag decreased by 22.4% at 14°, compared with the base line. However, the best effects are obtained on actuator with plane exposed electrode in the low-speed experiment and the abilities of saw-toothed actuators are expected to be verified under high-speed conditions.  相似文献   

2.
《中国航空学报》2016,(5):1237-1246
An experimental investigation was conducted to evaluate the effect of symmetrical plasma actuators on turbulent boundary layer separation control at high Reynolds number. Compared with the traditional control method of plasma actuator, the whole test model was made of aluminum and acted as a covered electrode of the symmetrical plasma actuator. The experimental study of plasma actuators' effect on surrounding air, a canonical zero-pressure gradient turbulent boundary, was carried out using particle image velocimetry(PIV) and laser Doppler velocimetry(LDV) in the 0.75 m × 0.75 m low speed wind tunnel to reveal the symmetrical plasma actuator characterization in an external flow. A half model of wing-body configuration was experimentally investigated in the  3.2 m low speed wind tunnel with a six-component strain gauge balance and PIV. The results show that the turbulent boundary layer separation of wing can be obviously suppressed and the maximum lift coefficient is improved at high Reynolds number with the symmetrical plasma actuator. It turns out that the maximum lift coefficient increased by approximately 8.98% and the stall angle of attack was delayed by approximately 2° at Reynolds number2 ×10~6. The effective mechanism for the turbulent separation control by the symmetrical plasma actuators is to induce the vortex near the wing surface which could create the relatively largescale disturbance and promote momentum mixing between low speed flow and main flow regions.  相似文献   

3.
    
《中国航空学报》2023,36(2):87-99
Ice accretion on aircraft encountering supercooled water droplets in clouds poses great risks to flight performance and safety. With the aim of optimizing the newly developed streamwise plasma heat knife method for anti-icing, a parametric investigation is carried out in this work. The influence of the detailed voltage profile on the heating effects of a Surface Dielectric Barrier Discharge driven by Nanosecond Pulses (NS-SDBD) is investigated, and a comparison of the anti-icing performance among different configurations of streamwise plasma heat knife is made. The results show that columnar high-temperature regions produced by a multi-streamer discharge appear at small pulse rise time, but become diffuse as the pulse rise time increases. An optimal pulse rise time exists to provide a wide range and high value of temperature, which is found to be 150 ns for the setup in the present study. The influence of the pulse fall time is much weaker than that of the rise time. The range and value of the temperature decrease with increasing pulse fall time. A greater pulse width is found to improve the heating effect by increasing the discharge power. When a spanwise electrode is placed connecting the streamwise electrodes of the streamwise plasma heat knife at the airfoil leading edge, the anti-icing performance becomes poorer, whereas good performance is achieved when the spanwise electrode is at the edge of the streamwise electrodes. Based on this, a three-level configuration of the plasma heat knife is proposed, and its anti-icing performance is found to be much better than that of the original configuration.  相似文献   

4.
    
Flow control using surface Dielectric Barrier Discharge(DBD) plasma actuators driven by a sinusoidal alternating-current power supply has gained significant attention from the aeronautic industry. The induced flow field of the plasma actuator, with the starting vortex in the wall jet,plays an important role in flow control. However, the energy consumed for producing the induced flow field is only a small fraction of the total energy utilized by the plasma actuator, and most of the total energy i...  相似文献   

5.
本文首次将新型丝状暴露电极DBD等离子激励器应用于大迎角下细长体非对称涡控制.丝状暴露电极的材料的选择对DBD推力以及推力效率至关重要,通过地面精细推力测量对丝状暴露电极等离子体激励器进行了优化,结果表明,本文研究材料中采用钨丝作为暴露电极,其推力效率最优;且随着电极直径从d=0.3 mm减小到d=0.08 mm,DB...  相似文献   

6.
纳秒脉冲等离子体激励控制小后掠三角翼低速绕流试验   总被引:2,自引:1,他引:2  
为探索纳秒脉冲介质阻挡放电(NS DBD)对小后掠尖前缘三角翼的流动控制效果和作用机理,进行NS DBD用于改善其气动特性的测力试验和流动显示试验。当来流速度分别为30m/s和45m/s时,测力试验结果表明位于机翼前缘的NS DBD能很好地改善三角翼大迎角气动特性,其中来流速度为45m/s时最大升力系数提高了18.3%;研究了脉冲激励频率对流动控制效果的影响规律,最佳的无量纲激励频率F+≈1~2。在来流速度为20m/s时,采用粒子图像测速仪(PIV)研究了不同迎角下激励前后机翼背风面流场,表明NS DBD可改善上翼面旋涡结构,使分离涡附体并得到加强。基于试验结果,认为NS DBD进行三角翼前缘涡控制的机理是激励诱导分离剪切层周期性产生附体的分离涡,从而维持了上翼面大迎角时的涡升力。  相似文献   

7.
唐冰亮  梁华  魏彪  杨鹤森 《推进技术》2020,41(10):2390-2400
针对飞翼布局力矩控制问题,采用纳秒脉冲表面介质阻挡放电(NS-DBD)激励,在来流风速30 m/s时,开展飞翼等离子体流动控制风洞试验,研究了不同激励参数和位置对飞翼升阻特性和力矩特性的影响。结果表明,NS-DBD激励能够有效改善飞翼大迎角气动特性。激励频率对飞翼升阻特性影响较大,激励频率为0.2 kHz时,增升效果最好,最大升力系数提高14.5%,失速迎角推迟5°。随着激励频率的增加,增升效果逐渐变差,减阻效果变好。单侧施加激励时,能够实现大迎角下飞翼模型的力矩控制,随着激励频率的增加,滚转力矩的控制效果减小,激励频率为0.2kHz时,平均滚转力矩系数变化为ΔMX=0.005691;偏航力矩的控制效果增大,激励频率为1kHz时,平均偏航力矩系数变化为ΔMY=-0.001571;俯仰力矩的控制效果减小,激励频率为0.2kHz时,平均俯仰力矩系数变化为ΔMZ=-0.002576。在中翼段和内翼段施加激励,破坏了飞翼的俯仰力矩特性,在外翼段和机翼右侧施加激励,能够显著改善飞翼的俯仰力矩特性。流场测量结果表明:等离子体激励对飞翼气动力矩的控制,主要是通过控制流动分离和控制横向流动来实现的。NS-DBD激励为改善飞翼布局稳定性和操纵性提供一种潜在的技术手段。  相似文献   

8.
飞翼布局无人机的稳定与操纵特性分析研究   总被引:2,自引:0,他引:2  
程雪梅 《飞行力学》2011,29(1):9-12
从气动和控制综合设计角度,提出了解决飞翼布局无人机稳定能力问题的多轴静不稳定增稳控制规律,通过对多操纵面操纵特性和操纵需求分析给出了操纵面的配置策略.仿真分析表明,所提出的设计方法较好地解决了飞翼布局无人机特殊的稳定与操纵问题.  相似文献   

9.
针对某中等展弦比高速飞翼布局飞机,利用CFD计算方法,研究了一套新型舵面组合对飞机起降任务阶段纵向气动力特性的影响,并对该飞翼布局飞机不同舵面组合进行了数值模拟.仿真结果表明,采用该舵面组合在飞机的起降阶段可以有效改善其纵向气动力特性和操稳特性.  相似文献   

10.
针对大展弦比飞翼布局无人机的刚体运动与弹性运动耦合动力学模型,提出了一种基于反步法的鲁棒非线性控制方法。该方法考虑了飞翼无人机的非线性因素,将动态面反步控制作为内环控制抵消系统的非线性因素;同时考虑系统实际存在的弹性耦合项、参数不确定项以及外部扰动,将内环反步控制与飞翼无人机模型整体作为新的被控对象,引入最优化理论对新的被控对象设计了外环鲁棒控制器。仿真结果表明,所提出的控制器不仅满足飞翼无人机姿态跟踪性能的要求,且对模型不确定性和气动弹性影响具有鲁棒性。  相似文献   

11.
Numerical simulation of unsteady flow control over an oscillating NACA0012 airfoil is investigated. Flow actuation of a turbulent flow over the airfoil is provided by low current DC surface glow discharge plasma actuator which is analytically modeled as an ion pressure force produced in the cathode sheath region. The modeled plasma actuator has an induced pressure force of about 2 k Pa under a typical experiment condition and is placed on the airfoil surface at 0% chord length and/or at 10% chord length. The plasma actuator at deep-stall angles(from 5° to 25°) is able to slightly delay a dynamic stall and to weaken a pressure fluctuation in down-stroke motion. As a result, the wake region is reduced. The actuation effect varies with different plasma pulse frequencies, actuator locations and reduced frequencies. A lift coefficient can increase up to 70% by a selective operation of the plasma actuator with various plasma frequencies and locations as the angle of attack changes. Active flow control which is a key advantageous feature of the plasma actuator reveals that a dynamic stall phenomenon can be controlled by the surface plasma actuator with less power consumption if a careful control scheme of the plasma actuator is employed with the optimized plasma pulse frequency and actuator location corresponding to a dynamic change in reduced frequency.  相似文献   

12.
Aircraft icing has long been a plague to aviation for its serious threat to flight safety. Even though lots of methods for anti-icing have been in use or studied for quite a long time, new methods are still in great demand for both civil and military aircraft. The current study in this paper uses widely used Dielectric Barrier Discharge(DBD) plasma actuation to anti-ice on a NACA0012 airfoil model with a chord length of 53.5 cm in a closed-circuit icing wind tunnel. An actuator was installed at the leading edge of the airfoil model, and actuated by a pulsed low-temperature plasma power source. The actuator has two types of layout, a striped electrode layout and a meshy electrode layout.The ice accretion process or anti-icing process was recorded by a CCD camera and an infrared camera. Instantaneous pictures and infrared contours show that both types of DBD plasma actuators have the ability for anti-ice under a freestream velocity of 90 m/s, a static temperature of -7℃,an Median Volume droplet Diameter(MVD) of 20 lm, and an Liquid Water Content(LWC) of 0.5 g/m~3. The detected variations of temperatures with time at specific locations reveal that the temperatures oscillate for some time after spraying at first, and then tend to be nearly constant values.This shows that the key point of the anti-icing mechanism with DBD plasma actuation is to achieve a thermal equilibrium on the model surface. Besides, the power consumption in the anti-icing process was estimated in this paper by Lissajous figures measured by an oscilloscope, and it is lower than those of existing anti-icing methods. The experimental results presented in this paper indicate that the DBD plasma anti-icing method is a promising technique in the future.  相似文献   

13.
    
Aerodynamic performance of low-Reynolds number flyers, for a chord-based Reynolds number of 105 or below, is sensitive to wind gusts and flow separation. Active flow control offers insight into fluid physics as well as possible improvements in vehicle performance. While facilitating flow control by introducing feedback control and fluidic devices, major challenges of achieving a target aerodynamic performance under unsteady flow conditions lie on the high-dimensional nonlinear dynamics of the flow system. Therefore, a successful flow control framework requires a viable as well as accessible control scheme and understanding of underlying flow dynamics as key information of the flow system. On the other hand, promising devices have been developed recently to facilitate flow control in this flow regime. The dielectric barrier discharge (DBD) actuator is such an example; it does not have moving parts and provides fast impact on the flow field locally. In this paper, recent feedback flow control studies, especially those focusing on unsteady low-Reynolds number aerodynamics, are reviewed. As an example of an effective flow control framework, it is demonstrated that aerodynamic lift of a high angle-of-attack wing under fluctuating free-stream conditions can be stabilized using the DBD actuator and an adaptive algorithm based on general input–output models. System nonlinearities and control challenges are discussed by assessing control performance and the variation of the system parameters under various flow and actuation conditions. Other fundamental issues from the flow dynamics view point, such as the lift stabilization mechanism and the influence on drag fluctuation are also explored. Both potentiality and limitation of the linear modeling approach are discussed. In addition, guidelines on system identification and the controller and actuator setups are suggested.  相似文献   

14.
将飞翼布局飞机的阵风减缓设计转化为多目标优化问题.基于气动伺服弹性稳定裕度修正个体适应度,建立了改进的多目标非支配排序遗传-阵风减缓算法(NSGA-GLA算法).基于无控飞机的阵风响应特性,提出了阵风减缓控制方案.以翼根弯矩、俯仰角速率和舵偏角最小为目标,采用NSGA-GLA算法对控制器增益参数进行了优化.仿真结果表明,所设计的控制器能够有效改善飞机的阵风响应特性,实现阵风减缓.  相似文献   

15.
Acceleration of DDT by non-thermal plasma in a single-trial detonation tube   总被引:1,自引:0,他引:1  
This paper compares the flame acceleration in single-trial dual-detonation tubes triggered by a spark plug and non-thermal plasma igniter. The low-temperature plasma was generated by an in-house novel AC-driven dielectric barrier discharge igniter, which reduces the power supply requirements and was applied in the quiescent ignition of a single-trial detonation tube. Three different types of detonation mixtures were tested with flame propagation tracked by ion probes and pressure waves recorded by high-frequency pressure transducers. The flame propagation speeds were calculated and compared based on signals from the ion probes. The detonation combustion succeeded in the dual tubes, but the deflagration-to-detonation transition could be significantly accelerated by the plasma for all mixtures, as it was shortened by more than 50% compared to that of the spark plug. The present study provides a suitable technological approach for igniters of PDEs.  相似文献   

16.
飞翼布局无人机进排气效应风洞试验研究   总被引:1,自引:0,他引:1  
飞机进排气会对全机气动性能产生明显的影响.采用引射式动力模拟器对飞翼布局无人机开展进排气效应模拟,分析进排气对全机气动特性的影响.试验结果表明:进排气对飞翼布局升力影响不明显,对阻力影响量比较大,可使全机最大升阻比降低1~4左右,而喷流能使全机最大升阻比下降1~1.8左右,进排气效应使得全机俯仰力矩增加,但纵向静安定度基本不变;进排气对全机横航向特性影响不大,对襟翼效率影响也甚微.可作为飞翼无人机气动布局设计的参考.  相似文献   

17.
双极性等离子体激励器圆柱绕流控制实验研究   总被引:5,自引:0,他引:5  
在低速风洞中利用多级双极性等离子体激励器控制圆柱绕流的流动分离。实验风速U∞=10m/s,基于圆柱直径的雷诺数Re=2.8×10^4,在实验中将两组三级双极性等离子体激励器布置在圆柱模型肩部,利用粒子图像测速技术测量圆柱的尾流场。实验结果表明,采用定常和非定常激励均能抑制圆柱尾迹区,等离子体激励强度是影响激励器对圆柱绕流控制能力的重要因素;非定常脉冲激励耗电少,对流动控制能力强,效率明显高于定常激励,脉冲激励频率影响等离子体激励器对流动的控制能力。在实验风速为10m/s时,脉冲激励频率与圆柱涡脱落频率一致,流动控制效果较好。  相似文献   

18.
A model of flow separation controlled by dielectric barrier discharge   总被引:1,自引:0,他引:1  
Flow separation,as an aerodynamic phenomenon,occurs in specific conditions.The conditions are studied in a wind tunnel on different airfoils.The phenomenon can be delayed or suppressed by exerting an external momentum to the flow.Dielectric barrier discharge actuators arranged in a row of 8 and perpendicular to the flow direction can delay flow separation by exerting the momentum.In this study,a mathematical model is developed to predict a parameter,which is utilized to represent flow separation on an NACA0012 airfoil.The model is based on the neurofuzzy method applied to experimental datasets.The neuro model is trained in different flow conditions and the parameter is measured by pressure sensors.  相似文献   

19.
空腔在自由来流下将产生强烈的气动噪声,这种噪声会对飞机产生负面作用,需要寻求噪声控制方法抑制空腔噪声。等离子体是一门新兴的流动控制技术,可应用在噪声抑制方面。通过在空腔前缘、后缘以及底面10个不同的位置布置等离子体激励器,研究了等离子体激励对空腔噪声的影响。结果表明:等离子体激励可以降低空腔噪声,声压级最高降低约4 dB;降低了空腔离散噪声的峰值频率;在空腔前缘壁面施加等离子体激励,噪声抑制效果最好。  相似文献   

20.
提出一种上下错开的无尾联接翼,即前翼或者后翼上反一定角度,使得前后翼垂直方向的相对距离从翼根处开始到翼梢处逐渐增大,以达到减小前后翼气动干扰的目的,搭接的小翼具有翼梢小翼作用,可有效减小诱导阻力。采用基于RANS方程的数值方法,研究了前后翼分别上反10°,20°和30°时对总体气动特性的影响,结果表明,当前翼上反且上反角为30°时其联接翼系统气动性能最佳。对该联接翼布局在Ma=0.85,0.95和1.20下进行了数值分析,结果表明,其升力系数变化较小,阻力系数在Ma0.85后才急剧增大,有应用于未来跨声速/超声速客机布局的潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号