共查询到14条相似文献,搜索用时 140 毫秒
1.
随着制造理念和制造水平的不断提高,大量复合制造工艺背景下的近净成形叶片被应用到现役或在研的航空发动机中。该类叶片是典型的复杂薄壁结构零件,无精确定位基准,且成形一致性差。采用传统叶身定位,加工后的前/后缘、榫齿形状和位置精度均难以保证,从而导致产品一致性差,易超差与合格率低。针对以上问题,提出一种面向自适应加工的复杂薄壁结构零件工艺几何模型重构方法。首先,建立复杂曲面的采样点分布模型,快速获取叶片精确成型区域的位置和形状;其次,提出基于特征曲线相似变形的模型重构算法,精确重构前/后缘非精确成型区域的工艺几何模型;最后,通过精锻叶片自适应加工试验进行验证。试验结果表明:该方法可有效满足以精锻叶片为代表的复杂薄壁构件自适应加工要求。 相似文献
2.
航空发动机压气机叶片在前期净近成形工艺中,其前后缘曲率变化剧烈,形状特殊,无法直接成形,需要进行二次加工。然而,前期工艺会使叶片产生变形,理论数模已经无法适用于其二次加工。因此,为了解决因变形带来的前后缘加工问题,实现前后缘与叶身的光滑转接加工,提出了一种基于刀轨修改的叶片前后缘几何自适应的加工方法。首先,在前后缘附近的已成形区域上提取特征测量点并对其进行实测;然后,通过特征点实测数据分析叶片前期工艺变形情况,并基于变形数据建立叶片截面Z坐标值与变形规律的映射关系函数;最后,根据变形映射函数,相应地调整原始理论刀位文件,以调整完的刀轨实现叶片前后缘的自适应加工。以某型号航空发动机精锻叶片为例进行仿真试验验证,试验结果表明该方法优化效果显著,原理论刀位文件与调整后的刀位文件的加工误差相比,后者偏差基本在0.01 mm以内,极大程度地减少了加工误差。该方法能有效解决精锻叶片进排气边的光滑转接加工问题。 相似文献
3.
新型航空发动机已部分采用精密锻造工艺提高叶片的制造精度和效率。然而,精锻后的叶身型面与设计模型存在几何偏差,导致依据设计模型加工后的进/排气边与精锻的叶身型面不能很好地匹配。为了解决该问题,提出一种面向精锻叶片自适应加工的几何重构方法。首先,建立基于公差约束配准的目标函数,并采用粒子群优化(PSO)算法求解目标函数。其次,提出基于叶身变形趋势预测进/排气边轮廓的光顺重构算法。最后,通过精锻叶片自适应数控加工实验对提出的方案和算法进行验证。实验结果表明,该方案可以有效重构出合格的工艺模型,满足精锻叶片的精密数控加工要求。 相似文献
4.
航空发动机叶片前后缘自由式砂带抛光技术 总被引:1,自引:1,他引:0
由于叶片前后缘(LTE)的轮廓形状和表面质量将对航空发动机的气动性能和叶片的疲劳性能产生直接影响,因此为提高前后缘的轮廓度和表面质量,通过对目前航空发动机叶片前后缘抛光所存在的问题进行分析,结合叶片前后缘抛光工艺要求,并基于自由式砂带抛光的工艺特点,提出了叶片前后缘自由式砂带抛光工艺方法;针对该抛光工艺方法,建立其砂带张紧力控制系统,确定了抛光加工中的砂带走刀步长计算公式及抛光轨迹规划方法;最后以某型号叶片的前后缘作为加工对象进行抛光实验研究。检测结果显示:叶片前后缘轮廓度误差小于0.01mm,其表面粗糙度小于0.4μm,证实了该抛光工艺方法对提高叶片前后缘的轮廓度和表面质量的有效性。 相似文献
5.
流动应力是反映材料抵抗塑性变形的能力。锻压时,坯料的流动应力与变形温度相关。叶片在锻压过程中,温度分布极不均匀所以在各部位上的流动应力也各不相等。为了准确地估算叶片锻压时的应力分布与所需载何,有必要对流动应力进行计算。由于叶片类锻件的几何形状自成体系,借助计算机 相似文献
6.
叶片前后缘的形位对叶片气动性能有着显著影响,且其分割结果也严重影响特征参数的精密计算。现有的叶片前后缘分割算法大多基于拓延算法的实现与改进,但是拓延算法本身尚不能自适应叶型截面尺寸来分割点云,而后续的改进算法在轮廓线误差控制上仍有待加强。针对叶片截面线前后缘的点云精确分割问题,参照椭圆弧叶型的造型设计特点,提出了基于拐点检测的前后缘评定算法。通过对截面线点云旋转、截取、顺时针排序以及拐点检测处理,实现了在高精度测量条件下对叶片前后缘的精确分割。最后设计了对比实验,验证了本文算法可以定性地分割叶片前后缘,并在线轮廓误差上保持了较低水平;论证了在逐点拓延椭圆拟合过程中,从凹性点即开始影响线轮廓误差。 相似文献
7.
8.
针对具有自适应后缘的跨声速翼型,基于代理模型和遗传算法相结合的优化方法,开展考虑自适应后缘结构约束的翼型气动优化设计研究。结果表明,低升力系数下翼面流场没有明显的能量损失,不同设计升力系数得到的自适应后缘翼型阻力相差不大;高升力系数下翼面附近存在激波,翼型阻力主要由激波强度决定。对于以低升力系数为设计点的基本翼型,通过后缘自适应变弯来调整载荷分布,可以降低翼面激波强度,减小翼型阻力;对于以高升力系数为设计点的基本翼型,可以直接通过气动优化来消除翼面激波,使得翼型阻力达到最小。因此对于带有自适应后缘的翼型,为了实现宽升力系数范围内的阻力最小,应首先以高升力系数为设计点完成基本翼型的气动优化设计,然后以低升力系数为设计点完成自适应后缘外形的气动优化设计。 相似文献
9.
通过对目标的不确定机动分析和对不确定机动的模式分类(非机动、临界机动、弱机动、强机动),建立了一种新的目标状态自适应估计器——交互作用的双自适应模型估计器。它通过具有机动识别特性的二阶自适应模型和具有机动水平特性的三阶自适应模型,以及它们之间交互作用自适应组合方式的结合,达到了跟踪估计目标各种运动的“全面”自适应能力。应用新估计器对目标的5种基本运动进行了Monto-carlo仿真。仿真表明,它具有所期望的良好性能。 相似文献
10.
<正> 1。引言 众所周知,多关节机械手是高度耦合的,时变的非线性系统,现在国内外市场上的工业机械手绝大多数仍采用经典控制理论设计控制器,但随着对机械手性能要求的不断提高,经典控制理论已不能满足要求,近十年来,控制专家们开始研究自适应控制来解决复杂的机械手控制系统的设计。文献(1)提出局部参数优化的自适应控制算法,但不能保证整个系统稳定而必须进行十分困难的稳定性分析。文献(2)提出基于摄动方程的自适应控制,将非线性控制问题简化成关于期望轨迹的线性控制问题。但要进行实时辨识,因而实时计算量大,实时性差。笔者尚未见到关于解决机械手传动装置中的固有非线性,如库仑摩擦、间隙等的研究报导。实际上这种固有非线性对系统的性能,如精度、稳定性等有不可忽视的影响。此外上述对机械手自适应控制的研究都是计算机仿真,很少有实验研究的报导。 相似文献
11.
航空发动机叶片是整机核心零件,其制造量占到30%以上。叶片叶缘具有大弯扭复杂曲面、薄壁圆角半径微小渐变、精度要求苛刻等特征,末端工序磨抛的精度和品质直接决定整机的性能与寿命。人工仍然是叶片叶缘磨抛的主要手段,然而粉尘危害健康、经验依赖性强、零件一致性差等不足决定了自动化磨抛是必然趋势。叶片叶缘自动化磨抛多采用砂轮横磨或纵磨的刀路规划方式,存在刀路不连续且分行密集、力控制困难等不足,易造成叶缘局部过切,难以保证圆角轮廓创成。为此,建立了砂带包络叶缘的螺旋进给力控磨抛工艺,提出了面族与复杂曲面高阶切触的随形磨抛路径规划方法,实现了叶片叶缘的宽行高效磨抛。首先对叶缘区域进行横磨刀路规划,然后依照圆弧拟合曲线原理进行高阶切触式包络段再规划,最后进行横纵混合磨抛路径规划实现螺旋式连续进给。针对航空发动机叶片开展仿真和实验验证,结果表明所提出的方法相比于传统的横磨或纵磨方法,可将刀触点减少78.8%,轮廓精度由-0.06~+0.07 mm提高到-0.015~+0.05 mm,表面粗糙度由Ra>3.2 μm提高到0.175 μm,并且有效保证了叶缘轮廓形状,避免了过切现象。 相似文献
12.
基于相似理论,对简化的层板冷却涡轮叶片前缘放大模型内部的流动与传热特性进行实验研究,对比了无绕流柱和带菱形扰流柱两种实验模型的流动阻力系数、靶面温度和表面传热系数的分布.实验中采用红外热像技术测量换热面的温度,采用ANSYS软件计算换热面的局部热流密度.结果表明:两种模型的流动阻力随进气雷诺数逐渐增大,带菱形扰流柱模型的流动阻力总体上较大;靶面局部表面传热系数的分布特征基本相同,带菱形扰流柱模型的局部表面传热系数比无扰流柱模型的稍高;靶面平均表面传热系数的差别很小,相同进气雷诺数下带菱形扰流柱模型的平均表面传热系数值最多大7%. 相似文献
13.
仿形涡流检测技术因其耦合性好可有效抑制检测过程晃动而特别适合对大曲率叶片前缘快速检测。针对涡轮叶片前缘仿形涡流检测建立前缘及仿形线圈有限元模型,运用有限元方法分析叶片前缘凹坑、长裂纹、边沿凹坑3种典型缺陷在内外两种激励、不同内径线圈、不同频率等模式下的检测信号特征。仿真结果表明:大曲率前缘实施仿形涡流检测,检测区域可有效覆盖整个前缘区域,检测频率越高,检测灵敏度越高。双线圈检测模式下,外激励内接收比内激励外接收灵敏高,当内检测线圈尺寸大于缺陷的尺度时,内接收线圈内径越小,其相对灵敏度越高。结合仿真结论,制作前缘缺陷试块,采用锁相放大及图形化编程技术,设计前缘仿形涡流检测系统,试验结果表明,仿形线圈可有效检出前缘典型缺陷,检测幅值相位输出结果与仿真结论相似。研究成果可用于指导大曲率叶片前缘的工程实践检测。 相似文献
14.
《中国航空学报》2022,35(12):72-88
Particle Image Velocimetry (PIV) is a well-developed and contactless technique in experimental fluid mechanics, but the strong velocity gradient and streamline curvature near the wall substantially limits its accuracy improvement. This paper presents a data processing procedure combining conventional PIV and newly developed Mirror Interchange (MI) based Interface-PIV for the measurement of the boundary layer parameter development in the blade leading edge region. The synthetic particle images are used to analyze the measurement errors in the entire procedure. Overall, three types of errors, namely the errors caused by the Window Deformation Iterative Multigrid (WIDIM) algorithm, the discrete data interpolation and integration, and the wall offset uncertainty, comprise the main measurement error. Specifically, the errors due to the discrete data interpolation and integration and the WIDIM algorithm comprise the mean bias, which can be corrected through the error analysis method proposed in the present work. Meanwhile, the errors due to the WIDIM algorithm and the wall offset uncertainty contribute to the measurement uncertainty. Computational fluid dynamics-based synthetic particle flows were generated to verify the newly developed PIV data processing procedure and the corresponding error analysis method. Results showed that the data processing method could improve the accuracy of PIV measurements for boundary layer flows with high curvature and acceleration and even with significant flow separation bubbles. Finally, the data processing method is also applied in a PIV experiment to investigate the boundary layer flows around a compressor blade leading edge, and several credible boundary flow parameters were obtained. 相似文献