首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present here a study of Solar Energetic Particle Events (SEPs) associated with solar flares during 2010–2014 in solar cycle 24. We have selected the flare events (≥GOES M-class), which produced SEPs. The SEPs are classified into three categories i.e. weak (proton intensity?≤?1?pfu), minor (1?pfu?<?proton intensity?<?10?pfu) and major (proton intensity?≥?10?pfu). We used the GOES data for the SEP events which have intensity greater than one pfu and SOHO/ERNE data for the SEP event less than one pfu intensity. In addition to the flare and SEP properties, we have also discussed different properties of associated CMEs.  相似文献   

2.
Systematical errors of the spacecraft measured high-energy particle fluxes are analyzed. The errors are shown to be inherent to most of the measurements made to be the monitoring of the high-energy radiation in the space. The level of the systematic errors of the measurements varies with energy, thus resulting in distortions of the solar energetic particle spectra based on the measurement data. The erroneous experimental data have resulted in spurious estimates of space radiation environment and give rise to erroneous physical conclusions.  相似文献   

3.
We present a comparative study of the properties of coronal mass ejections (CMEs) and flares associated with the solar energetic particle (SEP) events in the rising phases of solar cycles (SC) 23 (1996–1998) (22 events) and 24 (2009–2011) (20 events), which are associated with type II radio bursts. Based on the SEP intensity, we divided the events into three categories, i.e. weak (intensity < 1 pfu), minor (1 pfu < intensity < 10 pfu) and major (intensity ? 10 pfu) events. We used the GOES data for the minor and major SEP events and SOHO/ERNE data for the weak SEP event. We examine the correlation of SEP intensity with flare size and CME properties. We find that most of the major SEP events are associated with halo or partial halo CMEs originating close to the sun center and western-hemisphere. The fraction of halo CMEs in SC 24 is larger than the SC 23. For the minor SEP events one event in SC23 and one event in SC24 have widths < 120° and all other events are associated with halo or partial halo CMEs as in the case of major SEP events. In case of weak SEP events, majority (more than 60%) of events are associated with CME width < 120°. For both the SC the average CMEs speeds are similar. For major SEP events, average CME speeds are higher in comparison to minor and weak events. The SEP event intensity and GOES X-ray flare size are poorly correlated. During the rise phase of solar cycle 23 and 24, we find north–south asymmetry in the SEP event source locations: in cycle 23 most sources are located in the south, whereas during cycle 24 most sources are located in the north. This result is consistent with the asymmetry found with sunspot area and intense flares.  相似文献   

4.
Initial results of a combined study of electron events using the 3DP experiment on the WIND spacecraftand the Nançay Radioheliograph (NRH) are presented. A total of 57 electron events whose solar release time could be inferred from WIND/3DP observations occurred during NRH observing times. In 40 of them a distinct signature was detected in maps at decimetric and metric wavelengths (dm-m-λ) taken by the NRH. These events are equally distributed among two categories: (1) Electron release together with dm-m-λ bursts of a few minutes duration: these events are also accompanied by decametric-hectometric type III bursts seen by WAVES/WIND. They correspond to the well-known impulsive electron events. (2) Electron release during long duration (several tens of minutes) dm-m-λ emission: the electrons are most often released more than ten minutes after the start of the radio event. In the majority of cases the dm-m-λ radio source changes position, size, and/or intensity near the time of electron release.  相似文献   

5.
The solar particle events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and linear energy transfer (LET) spectra in shielding discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup.  相似文献   

6.
Emphasis is placed on predictions of the galactic cosmic-ray flux at high heliographic latitudes. Recent work on gradient and curvature drifts in the large-scale heliospheric magnetic field have modified the traditional argument that the cosmic rays should be essentially unmodulated over the solar poles. In fact, drift effects during the next solar cycle, when the International Solar Polar Mission is to fly, are predicted to cause considerable modulation in the polar regions. However, it is pointed out that the use of conventional drift formulae in the solar wind, which contains magnetic-field fluctuations with large amplitudes and perhaps systematic properties, is highly suspect. Prediction of cosmic-ray behavior over the solar poles is thus currently uncertain. Also considered is the behavior of the anomalous cosmic-ray component at high heliographic latitudes.  相似文献   

7.
Using the proton intensity and X-ray flux data from the GOES, combined with the observations of the associated solar eruptions by the Large Angle and Spectrometric Coronagraph Experiment (LASCO) on board the Solar and Heliospheric Observatory (SOHO), 14 large SEP events occurring in the period 2000 January–2002 April have been studied. It is found that: (1) events with the SEPs increasing shortly after the maximum of their parent flares (<1 h; hereafter prompt events) have rapid and great (up to four orders of magnitude) SEP increments in high-energy channels (> ∼100 MeV); however, for events whose onset of the SEP injection lags the flare maximum for a long time (>3 h; hereafter delayed events), the high-energy SEPs show no obvious enhancements (within one order of magnitude); (2) peak intensity of the prompt events is distinctly larger than that of the delayed events; (3) CMEs associated with the poorly magnetically connected events (source region <W30°) in our survey are all halo CMEs. From these observational differences, we propose a special scenario of the production of the largest SEP events: both CMEs and flares are induced in the same coronal process; high-energy particles accelerated in the reconnection region can escape easily from the open field lines and/or be transported by fast CMEs into interplanetary space, indicating a direct impulsive component in large gradual SEP events. Meanwhile, the broad width of the associated CMEs implies that the CME width is more important in SEP events production than previously considered.  相似文献   

8.
9.
We investigate the acceleration of charged particles in a time-dependent chaotic magnetic field in this work. In earlier works, it has been demonstrated that in an asymmetric wire-loop current systems (WLCSs), the magnetic field is of chaotic in nature. Furthermore, observations also showed that there exist time-varying current loops and current filaments in solar corona. It is therefore natural to conceive that the magnetic field on the solar surface is chaotic and time-dependent. Here, we develop a numerical model to study the acceleration process of charged particles in a time-varying chaotic magnetic field that is generated by an ensemble of 8 WLCSs. We found that the motion of energetic particles in the system is of diffusive in nature and a power law spectrum can quickly develop. The mechanism examined here may serve as an efficient pre-acceleration mechanism that generates the so-called seed particles for diffusive shock acceleration at a coronal mass ejection (CME) driven shock in large solar energetic particle (SEP) events.  相似文献   

10.
Between 1975 and 1983 HELIOS 1 scanned the interplanetary medium between 0.3 and 1 AU 31 times. The observed variations in the differential and integral flux of protons and helium nuclei in the energy range from 4 to >50 MeV/n are characterized by large temporal changes in the intensities, moderate changes in the energy spectrum and changes in the gradient below the detection level (60%). During solar minimum conditions recurrent disturbances are caused mainly by corotating interaction regions. The onset of solar activity near the end of 1977, characterized by a large number of solar events, is accompanied by a monotonous decrease of galactic cosmic radiation. The successive reduction of the cosmic ray intensity to the level of solar maximum is discussed in view of the role of large transient disturbances as compared to processes as diffusion, convection, adiabatic energy losses and drifts.  相似文献   

11.
We present an analysis of the time-intensity profiles of 25 solar energetic proton events at 18.2 MeV, modelled by fitting an analytical function form (a modified Weibull function) to the observed intensities. Additionally relying on previous work that characterized the magnetic connectivity between the event-related solar flare and the observer in these events with three angular parameters, we investigate the fit function parameters, the connectivity parameters, and the iron-to-carbon ratio of the events for dependencies and correlations. We find that the fit parameter controlling the basic shape of the profile (parameter a) is not clearly dependent on the connectivity parameters or the Fe/C ratio, suggesting that the profile shapes of neither well and weakly connected nor generally “impulsive” and “gradual” events differ systematically during the early stages of the event at 1 AU. In contrast, the time scaling of the fit function (parameter b) is at least moderately correlated with both the magnetic connectivity parameters and the Fe/C ratio, in that well-connected and iron-rich events are typically shorter in relative duration than weakly connected and nominal-abundance events; intensity rise times display a similar correlation with the connectivity parameters. We interpret the former result as following from the combined effect of various transport processes acting on the particles in interplanetary space, while the latter is essentially consistent with established knowledge regarding the observed dependence of the time-intensity profile shapes of solar energetic particle events on their magnetic connectivity and heavy ion abundances. The desirability of modelling the particle transport effects in detail and extending the analysis to cover higher energies is indicated.  相似文献   

12.
The large solar energetic particle (SEP) events and simultaneous large geomagnetic disturbances observed during October 1989 posed a significant, rapidly evolving space radiation hazard. Using data from the GOES-7, NOAA-10, IMP-8 and LDEF satellites, we determined the geomagnetic transmission, heavy ion fluences, mean Fe ionic charge state, and effective radiation hazard observed in low Earth orbit (LEO) for these SEPs. We modeled the geomagnetic transmission by tracing particles through the combination of the internal International Geomagnetic Reference Field (IGRF) and the Tsyganenko (1989) magnetospheric field models, extending the modeling to large geomagnetic disturbances. We used our results to assess the radiation hazard such very large SEP events would pose in the anticipated 52 degrees inclination space station orbit.  相似文献   

13.
Based on the author’s experience in ISO TC20/SC14 Working Group 4, this paper discusses the common problems encountered when developing a standard for solar energetic particle (SEP) fluxes. The problem involving the reliability of the distribution function describing the SEP events and the interpolation of this function into the region of not-yet-observed large events are discussed. The problems with describing the fluences of SEPs over a wide range of energy in the form of energetic spectra are analyzed. Requirements for SEP flux models are formulated. The reliability of some SEP flux models is determined by comparing their predictions with the experimental data.  相似文献   

14.
Atmospheric effects of energetic solar proton events (SPE) were studied in the North Atlantic region, for particle energies above 90 MeV, using NCEP/NCER reanalysis data and weather charts. A significant lowering of the pressure levels in the troposphere accompanied by an increase of the cyclonic vorticity was found near the south-eastern coast of Greenland on days following the event onsets. According to the weather charts, the detected effects are caused by the re-deepening (the regeneration) of well developed cyclones that seems to be intensified during the SPE under study. A joint analysis of the pressure and temperature variations showed a noticeable decrease of the temperature in the rear of the deepening cyclones that may be due to the cold advection increase. The results obtained suggest the influence of energetic SPE on the cyclone development as well as the importance of the frontal zone situated near the Greenland coast for this influence. The physical mechanism may involve the increase of cold advection due to changes in the temperature gradients in this region, resulting from radiative forcing and/or latent heat release related to variations of cloudiness.  相似文献   

15.
Galactic cosmic rays interact with the solar wind, the earth's magnetic field and its atmosphere to produce hadron, lepton and photon fields at aircraft altitudes. In addition to cosmic rays, energetic particles generated by solar activity bombard the earth from time to time. These particles, while less energetic than cosmic rays, also produce radiation fields at aircraft altitudes which have qualitatively the same properties as atmospheric cosmic rays. We have used a code based on transport theory to calculate atmospheric cosmic-ray quantities and compared them with experimental data. Agreement with these data is seen to be good. We have then used this code to calculate equivalent doses to aircraft crews. We have also used the code to calculate radiation doses from several large solar energetic particle events which took place in 1989, including the very large event that occurred on September 29th and 30th of that year. The spectra incident on the atmosphere were determined assuming diffusive shock theory.  相似文献   

16.
We present a model for composition of heavy ions in the solar energetic particles (SEP). The SEP composition in a typical large solar particle event reflects the composition of the Sun, with adjustments due to fractionation effects which depend on the first ionization potential (FIP) of the ion and on the ratio of ionic charge to mass (Q/M). Flare-to-flare variations in composition are represented by parameters describing these fractionation effects and the distributions of these parameters are presented.  相似文献   

17.
Intensity-time profiles of protons, alpha particles, and heavy ions (C, O, Fe) in the MeV/nucleon energy range have been analyzed for one solar particle event following the solar flare on September 23, 1978. The data have been obtained with the wide angle double dE/dx-E sensor of the Max-Planck-Institut/University of Maryland experiment onboard ISEE-3. We found time variations in the iron to helium ratio of up to 2 orders of magnitude and a significant variation of the O/He ratio during this event, whereas the C/O-ratio at the same energy/nucleon appears to be time independent. We investigated the influence of a rigidity dependent mean free path in interplanetary space and of rigidity dependent coronal propagation on heavy ion ratios during solar particle events. We found that both the magnitude and time scale of the ratio changes during the September 23 event cannot be explained by rigidity dependent interplanetary or coronal propagation alone. These ratio changes are probably caused by multiple injection at the sun.  相似文献   

18.
We present here the first results obtained by the Ultraviolet Coronagraph Spectrometer (UVCS) operating on board the SOHO satellite. The UVCS started to observe the extended corona at the end of January 1996; it routinely obtains coronal spectra in the 1145 Å – 1287 Å, 984 Å – 1080 Å ranges, and intensity data in the visible continuum. Through the composition of slit images it also produces monocromatic images of the extended corona. The performance of the instrument is excellent and the data obtained up to now are of great interest. We briefly describe preliminary results concerning polar coronal holes, streamers and a coronal mass ejection, in particular: the very large r.m.s. velocities of ions in polar holes (hundreds km/sec for OVI and MgX); the puzzling difference between the HI Ly- image and that in the OVI resonance doublet, for most streamers; the different signatures of the core and external layers of the streamers in the width of the ion lines and in the OVI doublet ratio, indicating larger line-of-sight (l.o.s.) and outflow velocities in the latter.  相似文献   

19.
In one type of space weather, the sun emits intermittent enhancements of solar energetic particle (SEP) fluxes. A fraction of these fluxes that reach the envelope of geospace can be injected into the magnetospheric particle confinement region after transiting the geomagnetic tail domain, the polar cleft/cusp region, or directly through the front side magnetopause. Common for these processes is that they provide inward diffusive “leakage” whenever the immediate external flux environment is more intense than in the outer trapping region. Conversely, following injection events outward leakage can also occur whereby the confinement region becomes a source of Magnetosheath particles. Numerical modeling has been carried out to investigate the effects on the ambient fluxes in the Earth's radiation belts from this effect.  相似文献   

20.
A relatively weak solar cosmic ray event registered at the Earth orbit following the flare of December 17, 1976 is discussed. The main feature of the event is the existence of a prolonged unusually high proton and electron anisotropy; even at the end of the decay phase of the flare the motion of the particles were mainly directed away from the Sun. The durations of proton and electron anisotropies were different. If prolonged particle injection is neglected the value of the anisotropy considerable exceeds all diffusive estimates. Time-intensity and anisotropy profiles of electrons and protons are fitted by a diffusive model including prolonged particle injection at the Sun. The best agreement with the data is obtained if the duration of injection equals about 20 and 7 hours for protons and electrons, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号