首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations of hard X-ray (HXR)/γ-ray continuum and γ-ray lines produced by energetic electrons and ions, respectively, colliding with the solar atmosphere, have shown that large solar flares can accelerate ions up to many GeV and electrons up to hundreds of MeV. Solar energetic particles (SEPs) are observed by spacecraft near 1 AU and by ground-based instrumentation to extend up to similar energies as in large SEP events, but it appears that a different acceleration process, one associated with fast coronal mass ejections is responsible. Much weaker SEP events are observed that are generally rich in electrons, 3He, and heavy elements. The energetic particles in these events appear to be similar to those accelerated in flares. The Ramaty high energy solar spectroscopic imager (RHESSI) mission provides high-resolution spectroscopy and imaging of flare HXRs and γ-rays. Such observations can provide information on the location, energy spectra, and composition of the flare accelerated energetic particles at the Sun. Here, preliminary comparisons of the RHESSI observations with observations of both energetic electron and ion near 1 AU are reviewed, and the implications for the particle acceleration and escape processes are discussed.  相似文献   

2.
We have developed a method to evaluate the spectrum of solar energetic protons at the top of the Earth’s atmosphere from the measurements of our balloon cosmic ray experiment. By using the Monte Carlo PLANETOCOSMICS code based on Geant4 we compute the interaction of solar protons [10 MeV–10 GeV] with the Earth’s atmosphere. We obtain the angular and energy distributions of secondary particles (p, e, e+, photons, muons) at different atmospheric levels as a function of primary proton spectra. By comparing the calculated depth dependence of the particle flux with the data obtained by our balloon experiment we can deduce the parameters of the solar proton spectrum that best fit the observations. In this paper we discuss our solar proton spectrum estimation method, and present results of its application to selected solar proton events from 2001 to 2005.  相似文献   

3.
Particle acceleration and transport at an oblique CME-driven shock   总被引:1,自引:0,他引:1  
In gradual solar energetic particle (SEP) events, protons and heavy ions are often accelerated to >100 MeV/nucleon at a CME-driven shock. In this work, we study particle acceleration at an oblique shock by extending our earlier particle acceleration and transport in heliosphere (PATH) code to include shocks with arbitrary θBN, where θBN is the angle between the upstream magnetic field and the shock normal. Instantaneous particle spectra at the shock front are obtained by solving the transport equation using the total diffusion coefficient κ, which is a function of the parallel diffusion coefficient κ and the perpendicular diffusion coefficient κ. In computing κ and κ, we use analytic expressions derived previously. The particle maximum energy at the shock front as a function of time, the time intensity profiles and particle spectra at 1 AU for five θBN’s are calculated for an example shock.  相似文献   

4.
We have analysed energetic storm particle (ESP) events in 116 interplanetary (IP) shocks driven by front-side full and partial halo coronal mass ejections (CMEs) with speeds >400 km s?1during the years 1996–2015. We investigated the occurrence and relationships of ESP events with several parameters describing the IP shocks, and the associated CMEs, type II radio bursts, and solar energetic particle (SEP) events. Most of the shocks (57 %) were associated with an ESP event at proton energies >1 MeV.The shock transit speeds from the Sun to 1 AU of the shocks associated with an ESP event were significantly greater than those of the shocks without an ESP event, and best distinguished these two groups of shocks from each other. The occurrence and maximum intensity of the ESP events also had the strongest dependence on the shock transit speed compared to the other parameters investigated. The correlation coefficient between ESP peak intensities and shock transit speeds was highest (0.73 ± 0.04) at 6.2 MeV. Weaker dependences were found on the shock speed at 1 AU, Alfvénic and magnetosonic Mach numbers, shock compression ratio, and CME speed. On average all these parameters were significantly different for shocks capable to accelerate ESPs compared to shocks not associated with ESPs, while the differences in the shock normal angle and in the width and longitude of the CMEs were insignificant.The CME-driven shocks producing energetic decametric–hectometric (DH) type II radio bursts and high-intensity SEP events proved to produce also more frequently ESP events with larger particle flux enhancements than other shocks. Together with the shock transit speed, the characteristics of solar DH type II radio bursts and SEP events play an important role in the occurrence and maximum intensity of ESP events at 1 AU.  相似文献   

5.
We present a Monte-Carlo technique to study the time-dependent transport of energetic particles in the interplanetary medium. We use the guiding center approximation between discrete finite pitch-angle scatterings to quantify the competing effects of focusing and pitch-angle scattering on energetic particles propagating along a Parker spiral magnetic field. We consider that the pitch-angle scattering process is produced by small-scale magnetic field irregularities frozen in the expanding solar wind. We also include the effects of both solar wind convection and adiabatic deceleration. We use a joint probability distribution P(h, μ′) = p(h; μ′)q(μ′; μ) to describe both the distance traveled by the particle between two scattering processes and the change in the particle pitch-angle after a scattering process. Here, p(h; μ′) is the conditional probability that the particle travels a distance h along the field line before the next scattering if it had a pitch-angle cosine μ′ after the previous scattering, and q(μ′; μ) is the conditional probability for the pitch-angle cosine μif the pitch-angle cosine was μ before the scattering. We consider several functional forms to describe the processes of pitch-angle scattering, such as an isotropic scattering without any memory of the initial particle’s pitch-angle or processes in which the scattering result depends upon the initial particle’s pitch-angle. The results of our simulations are pitch-angle distributions and time-intensity profiles that can be directly compared to spacecraft observations. Comparison of our simulations with near-relativistic (45–290 keV) electron events observed by the Electron, Proton and Alpha Monitor on board the Advanced Composition Explorer allows us to estimate both the time dependence of the injection of near-relativistic electrons into the interplanetary medium and the conditions for electron propagation along the interplanetary magnetic field.  相似文献   

6.
On January 20, 2005, 7:02–7:05 UT the Aragats Multidirectional Muon Monitor (AMMM) located at 3200 m a.s.l. registered enhancement of the high energy secondary muon flux (threshold ∼5 GeV). The enhancement, lasting for 3 min, has statistical significance of ∼4σ and is related to the X7.1 flare seen by the GOES, and very fast (>2500 km/s) CME seen by SOHO, and the Ground Level Enhancements (GLE) #69 detected by the world-wide network of neutron monitors and muon detectors. The energetic and temporal characteristics of the muon signal from the AMMM are compared with the characteristics of other monitors located at the Aragats Space-Environmental Center (ASEC) and with other neutron and muon detectors. Since secondary muons with energies >5 GeV are corresponding to solar proton primaries with energies 20–30 GeV we conclude that in the episode of the particle acceleration at 7:02–7:05 UT 20 January 2005 solar protons were accelerated up to energies in excess of 20 GeV.  相似文献   

7.
We present the analysis of the radio observations of December 1, 2004 from 07:00 UT to 07:40 UT in the 1.100–1.340 GHz band by Solar Broadband Radio Dynamic Spectrometer (SBRS) in Huairou Station. There are three groups of radio fine structures during the impulsive phase of this flare denoted by N1, Z2, and Z3. N1 has several emission lines with mixed fast and slow frequency drift rate which may reflect the conditions of flare loop and fast flows out from reconnection site; Z2 and Z3 are zebra patterns. The radio observations combined with hard X-ray and other observations show that the fine structures are connected with energetic particles. The information about magnetic field and energetic particle during the burst are also estimated based on our model.  相似文献   

8.
Atmospheric effects of energetic solar proton events (SPE) were studied in the North Atlantic region, for particle energies above 90 MeV, using NCEP/NCER reanalysis data and weather charts. A significant lowering of the pressure levels in the troposphere accompanied by an increase of the cyclonic vorticity was found near the south-eastern coast of Greenland on days following the event onsets. According to the weather charts, the detected effects are caused by the re-deepening (the regeneration) of well developed cyclones that seems to be intensified during the SPE under study. A joint analysis of the pressure and temperature variations showed a noticeable decrease of the temperature in the rear of the deepening cyclones that may be due to the cold advection increase. The results obtained suggest the influence of energetic SPE on the cyclone development as well as the importance of the frontal zone situated near the Greenland coast for this influence. The physical mechanism may involve the increase of cold advection due to changes in the temperature gradients in this region, resulting from radiative forcing and/or latent heat release related to variations of cloudiness.  相似文献   

9.
The hysteresis effect for small energies of galactic cosmic rays is due to two effects. The first is the same as for neutron monitor energies – the delay of the interplanetary processes responsible for cosmic ray modulation with respect to the initiating solar processes, according to the effective velocity of solar wind and shock waves propagation. Then, the observed cosmic ray intensity is connected to the solar activity variations during many months before the time of cosmic ray measurement. The second is caused by the time delay of small energy cosmic ray diffusion from the boundary of modulation region to the Earth’s orbit. The model describing the connection between solar activity variation and cosmic ray convection–diffusion global modulation for neutron monitor energies is here developed by taking into account also the time-lag of the small energy particle diffusion in the Heliosphere. We use theoretical results on drifts and analytically approximate the dependences of drifts from tilt angle, and take into account the dependence from the sign of primary particles, and from the sign of polar magnetic field (A > 0 or A < 0). The obtained results are applied on proton and alpha-particle satellite data. We analyze satellite 5-min data of proton fluxes with energies >1 MeV, >2 MeV, >5 MeV, >10 MeV, >30 MeV, >50 MeV, >60 MeV, >100 MeV, and in intervals 10–30 MeV, 30–60 MeV, and 60–100 MeV during January 1986–December 1999. We exclude periods with great cosmic ray increases caused by particle acceleration in solar flare events. Then, we determine monthly averaged fluxes, as well as 5-month and 11-month smoothed data. We analyze also satellite 5-min data on alpha-particle fluxes in the energy intervals 60-160 MeV, 160–260 MeV and 330–500 MeV during January 1986–May 2000. We correct observation data for drifts and then compare with what is expected according to the convection–diffusion mechanism. We assume different dimensions of the modulation region (by the time propagation X0 of solar wind from the Sun to the boundary of modulation region), for X0 values from 1 to 60 average months, by one-month steps. For each value of X0 we determine the correlation coefficient between variations of expected and observed cosmic ray intensities (the estimation of cosmic ray intensities values is given in Section 3 by Eq. (9), and the determination of correlation and regression coefficients in Section 3 by Eq. (8)). The dimension of modulation region is determined by the value of X0 max, for which the correlation coefficient reaches the maximum value. Then the effective radial diffusion coefficient and residual modulation in small energy region can be estimated.  相似文献   

10.
Accurate debris and meteoroid flux models are crucial for the design of manned and unmanned space missions. For the most abundant particle sizes smaller than a few millimetres, knowledge of the populations can only be gained from in situ detectors or the analysis of retrieved space hardware. The measurement of impact flux from exposed surfaces improves with increased surface area and exposure time.A post-flight impact investigation was initiated by the European Space Agency to record and analyse the impact fluxes and any potential resulting damage on the two flexible solar arrays of the Hubble Space Telescope. The arrays were deployed during the first Hubble Space Telescope servicing mission in December 1993 and retrieved in March 2002. They have a total exposed surface area of roughly 120 m2, including 42 m2 covered with solar cells. This new Hubble post-flight impact study follows a similar activity undertaken after the retrieval of one of the first solar arrays, in 1993. The earlier study provided the first opportunity for a numerical survey of damage to exposed surfaces from more than 600 km altitude, and of impacts from particles larger than 1 mm. The results have proven very valuable in validation of important flux model regimes. The second set of Hubble solar arrays has again provided an unrivalled opportunity to measure the meteoroid and debris environment, now sampled during a long interval in low Earth orbit, and to identify changes in the space debris environment since the previous survey. The retrieved solar array wings exhibit thousands of craters, many of which are visible to the naked eye. A few hundred impacts have completely penetrated the 0.7 mm thick array. The largest impact features are about 7–8 mm in diameter. The cover glass of the solar cells is particularly well suited to the recognition of small impact features by optical and electron microscopy. In this paper, we present the first results of the impact survey. Data upon the abundance of craters of specific measured size ranges are plotted as cumulative flux curves, and compared to the results of model predictions. The most significant change to the particle flux since 1993 is a decrease in the small debris population.  相似文献   

11.
We study a solar flare hard X-ray (HXR) source observed by the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) in which the HXR emission is almost entirely in a coronal loop so dense as to be collisionally thick at electron energies up to ∼45−60 keV. This contrasts with most events previously reported in which the HXR emission is primarily from the loop footpoints in the collisionally dense chromosphere. In particular, we show that the high loop column densities inferred from the GOES and RHESSI soft X-ray emission measure and the volume of the flare loop are consistent with the coronal thick-target interpretation of the HXR images and spectra. The high column densities observed already at the very beginning of the impulsive phase are explained by chromospheric evaporation during a preflare which, as Nobeyama 17 GHz radio images reveal, took place in the same set of nested loops as the main flare.  相似文献   

12.
We have observed cosmic-ray electrons from 10 to 1000 GeV by a long duration balloon flight using Polar Patrol Balloon (PPB) in Antarctica. The observation was carried out for 13 days at an altitude of 35 km in January 2004. The detector is an imaging calorimeter composed of scintillating-fiber belts and plastic scintillators inserted between lead plates. The geometrical factor of detector is about 600 cm2sr and the total thickness of lead absorber is 9 radiation lengths. The performance of the detector has been confirmed by the CERN-SPS beam test and also investigated by Monte-Carlo simulations. New telemetry system using a commercial satellite of iridium, power supply by solar batteries, and automatic level control using CPU have successfully been developed and operated during the flight. We have collected 5.7 × 103 events over 100 GeV including nearly 100 candidates of primary electrons.  相似文献   

13.
The characteristics of nighttime ionospheric scintillations measured at the L-band frequency of 1.575 GHz over Dibrugarh (27.5°N, 95°E, MLAT  17°N, 43° dip) during the ascending half of the solar cycle 24 from 2010 to 2014 have been investigated and the results are presented in this paper. The measurement location is within or outside the zone of influence of the equatorial ionization anomaly depending on solar and geomagnetic activity. Maximum scintillation is observed in the equinoxes irrespective of solar activity with clear asymmetry between March and September. The occurrence frequency in the solstices shifts from minimum in the June solstice in low solar activity to a minimum in the December solstice in high solar activity years. A significant positive correlation of occurrence of scintillations in the June solstice with solar activity has been observed. However, earlier reports from the Indian zone (~75°E) indicate negative or no correlation of scintillation in June solstice with solar activity. Scintillations activity/occurrence in solstices indicates a clear positive correlation with Es recorded simultaneously by a collocated Ionosonde. In equinoxes, maximum scintillations occur in the pre-midnight hours while in solstices the occurrence frequency peaks just after sunset. The incidence of strong scintillations (S4  0.4) increases with increase in solar activity. Strong (S4  0.4) ionospheric scintillations accompanied by TEC depletions in the pre-midnight period is attributed to equatorial irregularities whereas the dusk period scintillations are related to the sporadic-E activity. Present results thus indicate that the current location at the northern edge of the EIA behaves as low as well as mid-latitude location.  相似文献   

14.
We study energetic particle transport in a magnetic field configuration which models the solar wind magnetic turbulence plus the background field. A power-law Fourier amplitude is used for the fully 3D turbulence model, and in order to model anisotropic turbulence, the constant amplitude surfaces in k space are ellipsoids. The turbulence correlation lengths parallel (perpendicular) to the background magnetic field l (l) are varied in a wide range, and proton energies from 1 MeV to 10 GeV are assumed. Considering propagation on a distance corresponding to 1 AU, it is found that transport parallel and perpendicular to the background field heavily depends on the turbulence anisotropy, that is on the ratio l/l. The spatial distribution of energetic particle follows the shape of magnetic flux tube up to about 10 MeV, while for larger energies the structure of the magnetic flux tube is progressively washed out. The scatterplots of particle distribution show intermittent, non Gaussian structures for l  l (quasi slab turbulence), while a more diffusive, Gaussian structure is obtained for l  l (quasi 2D turbulence). The long time behavior of transport shows that anomalous (subdiffusive perpendicular and superdiffusive parallel) transport regimes are obtained for l  l, while Gaussian diffusive transport is obtained for both l  l and the isotropic turbulence case.  相似文献   

15.
Using high-resolution Hα, CaII 8542 Å and FeI 6302.5 Å Stokes spectral data obtained simultaneously with THEMIS in 2002 September, we have analyzed the spectra and the characteristics of a two-ribbon microflare (MF). The hard X-ray emission provides evidence of non-thermal particle acceleration in the microflare. The two-ribbons are located on either sides of the magnetic polarity inversion line. The non-thermal characteristics mainly appeared at the outer edges of the flare ribbons. It indicates that the instantaneous magnetic reconnection and the particle acceleration mainly took place at the outer edges of the flare ribbons. Using the Hα and CaII 8542 Å line profiles and the non-LTE calculation, we obtain the semi-empirical atmospheric model for the bright kernel of the MF. The result indicates that the temperature enhancement in the chromosphere is about 2000–2500 K.  相似文献   

16.
The spatial distributions of galactic and anomalous cosmic rays in the heliosphere at the solar minima of Cycles 20/22 (qA > 0) and of Cycle 21 (qA < 0) are studied, using data from IMP 8, Voyagers 1/2 and Pioneer 10. It is found that the radial dependences of intensities J can be approximated by a power of radial distance r as J  rα with a different value of a constant in the inner and outer heliosphere with a transition at a radial distance of 10–15 AU. To study the physical meaning of these radial intensity profiles we examined the rigidity dependences of the intensity gradients by determining the particle mean free paths, using a simple one-dimensional modulation model. The particle mean free path λ was assumed to be a separable function of distance of the form rγ and rigidity R of Rδ over the range of 0.5–3.0 GV in the inner and outer heliosphere. It was shown that λ of rigidity dependence of R1.6 determined for Cycle 20/22 (qA > 0) with anomalous He is about 4–5 times larger than that of Cycle 21 (qA < 0) with R0.9 at around 1 GV in the outer heliosphere, and that the radial dependences are r1.4 and r1.1, respectively, for Cycles 20/22 and for Cycle 21.  相似文献   

17.
Due to the narrow bandwidth and the small size of the subsecond microwave pulses, we can use them as probe sources for study of propagation effects in the low corona. More than 160 microwave bursts with subsecond pulses (SSP) have been observed with the Siberian Solar Radio Telescope at 5.7 CHz for the period 2000–2004. Working with a large dataset of homogeneous observational material (spatial resolution from 15″ to 20″, temporal resolution 14 mc), we estimated sizes of SSP and studied relation between SSP sizes and sense of the polarization and their position on the Sun. Our results are in accordance with those obtained during the 22nd solar cycle. The apparent sizes of SSP increase toward the solar limb. The obtained dependence is in agreement with Bastian‘s (Bastian, T.S. Angular scattering of solar radio emission by coronal turbulence. ApJ 426, 774, 1994.) model calculations. The center-to-limb variation of the source size is explained by scattering on plasma turbulence along the ray path in the solar corona. The most events with high polarization occur near the central meridian (±30°). The polarization sense corresponds mainly to the ordinary mode.  相似文献   

18.
An occulted solar flare occurred at about 06:07 UT on 2002, November 2. The RHESSI X-ray images show two separate parts. The lower part consists of a complete loop and the upper part a coronal source which well extends above the solar limb. The loop source shrank for about 3 min with a speed of ∼24 km s−1 during the early impulsive phase and then expanded at ∼7 km s−1, while the coronal source presented an upward motion at about 6 km s−1. We obtained the temperature map of the loop source from RHESSI image spectrum. The temperature of the loop increases with altitude, indicating that the reconnection X-point of this flare is located above the loop source. However, the apparent coronal source is the top of another independent large-scale loop.  相似文献   

19.
The radiation effects in electronic parts are called single-event effects, which are deemed to be critical for space missions. This paper presents the Single Event Upsets that were observed in an onboard memory device of the Low Earth Orbit “Flying Laptop” satellite mission during its in-orbit operation. The Single Event Upsets were carefully mapped on the satellite orbital space itself and their root causes were investigated together with their rates of occurrence. Subsequently, the events were traced to show several root cause sources such as (i) trapped energetic protons leaking to low altitudes within the South Atlantic Anomaly, (ii) Solar Energetic Particles emitted by an impulsive event on 10 September 2017, and (iii) Galactic Cosmic Rays. A profound analysis was carried out on the observed flight data, and its corresponding results are actually in agreement with the standard energetic particle models. The presented results provide another important insight on the Single Event Upsets for future Low Earth Orbit satellite missions.  相似文献   

20.
The spatial distribution of the vector of the Stokes parameters characterizing the radiance intensity and the radiance polarization describes the radiation field in the atmosphere. A simplified treatment of light as the scalar has only restricted application. A few studies compared previously results of the vector and scalar radiative transfer models and showed that scalar models are in error by up to 10% for many cases. Though several observational conditions were exploited, an effect of polarization on modeling of UV radiance has not been investigated yet for twilight. The paper presents a preliminary study of modeled UV radiance during twilight taking into account polarization. The intensity and the degree of linear polarization of the scattered UV radiance for two cases of the ground-based observations are discussed. In the first case, radiation incoming from the zenith for the solar zenith angles (SZA) from 90° to 98° is under investigation. Radiation in the solar principal plane for the beginning of twilight (SZA = 90.1°) was calculated in the second case. The study showed that the UV radiation field in the twilight atmosphere can be handled correctly only using the vector theory. The errors of scalar radiative transfer strongly depend on wavelength, line of an observation and solar position. The revealed distortion of the zenith radiance caused by using of the scalar approximation reaches maximum of 15% at 340 nm for the solar zenith angle (SZA) equal to 98°. The shorter wavelengths have the smaller errors, about 5% at 305 nm for SZA = 98°, due to the larger part of the single scattered radiance. The error of the scalar modeling may be as large as −17% for radiance incoming from the horizon for SZA = 90.1°. Scalar radiative transfer models underestimate the integral intensity in the principal plane up to 3–4% ± 0.5% at SZA = 90.1° for wavelengths from 320 to 340 nm. This should be taken into account in problems of radiative budget estimation and remote sensing of the atmosphere exploiting the twilight period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号