首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Density of discontinuities in the heliosphere   总被引:1,自引:0,他引:1  
The spatial distribution of MHD discontinuities in the solar wind has been studied, based on the long time observations by the magnetometer onboard Ulysses. We emphasize the critical importance of the method whereby events are selected; some previous work is critically reviewed in this respect. Our analysis supports earlier observations that the density of discontinuities decreases with increasing distance from the Sun. It is suggested, however, that the distribution of the discontinuity normals should be revised, retaining only those discontinuities for further study that have reliable normals. This study shows that the vast majority of well defined discontinuities has a small magnetic field component parallel to the discontinuity normal. Given the large number of discontinuities in the Ulysses data set there is a statistically sufficient number for further study. It is also shown in this paper that for the subset of well defined discontinuities the determination of the normal vector using Minimum Variance Analysis and the cross-product technique are equally valid.  相似文献   

2.
The study of heavy ions in space can provide a greater understanding of contemporary nucleosynthesis in our galaxy, as well as the acceleration and propagation of energetic particles in the interplanetary medium and the magnetosphere. We describe here a satellite experiment that uses plastic track detectors to study the age of cosmic-ray source material and the distribution of pathlengths over which the heaviest cosmic rays travel to earth. The experiment will also search for the singly charged particles, thought to make up the anomalous component, and for low-energy heavy ions deep in the magnetosphere.  相似文献   

3.
With the advent of the NASA STEREO mission, we are in a position to perform unique investigations of the evolution of coronal mass ejections (CMEs) as they propagate through the heliosphere, and thus can investigate the relationship between CMEs and their interplanetary counterparts, so-called interplanetary CMEs (ICMEs). ICME studies have been principally limited to single-point, in-situ observations; interpretation of the in-situ characteristics of ICMEs has been used to derive a range of ICME properties which we can now confirm or refute using the STEREO imaging data. This paper is a review of early STEREO CME observations and how they relate to our currently understanding of ICMEs based on in-situ observations. In that sense, it is a first glance at the applications of the new data-sets to this topic and provides pointers to more detailed analyses. We find good agreement with in-situ-based interpretations, but this in turn leads to an anomaly regarding the final stages of a CME event that we investigate briefly to identify directions for future study.  相似文献   

4.
For about the last 40 years, we have been trying to understand the propagation of cosmic rays and other energetic charged particles through the interplanetary medium. Identification of the basic processes affecting the propagation, namely diffusion, convection by the solar wind, adiabatic deceleration, and gradient and curvature drifts, was attained early on, but reaching detailed physical understanding, particularly of the roles of diffusion and gradient and curvature drifts, continues as an active topic of research to this day. Particularly unclear is the nature of the cross-field propagation. Many observations seem to require more efficient cross-field propagation than theoretical propagation models can easily produce. At the same time, there are other observations that seem to show strong guidance of the particles by the interplanetary magnetic field. With current measurements from spacecraft near Earth and from the Ulysses spacecraft, which samples nearly the complete range of heliographic latitudes in the inner heliosphere, critical tests of the ways in which cosmic rays and other energetic charged particles propagate through the interplanetary medium are possible. I briefly review the status of observations that are relevant to the characterization of diffusive propagation in the inner heliosphere and will present evidence for a possibly previously overlooked contribution from transport along magnetic flux tubes that deviate dramatically from the average interplanetary spiral configuration.  相似文献   

5.
The flux of galactic cosmic rays (GCR) extends over a wide range of energies (from 108 to 1020 eV); it has a strong dependence on particle energy. Given the large span of energies the detection techniques, transport mechanisms and other characteristics vary as energy increases. In the low energy region (<1012 eV) the flux of GCR is modulated by the solar activity. Continuous registers are necessary to study intensity variations that must have their origin in the Sun. Detectors were designed and constructed for the purpose, they operate since the middle of the last century providing valuable information to study recurrent periodicities and their relationship to those of solar phenomena, but also to elucidate whose are the relevant transport mechanisms inside the heliosphere. A brief review of the advancement in the comprehension of these phenomena is presented.  相似文献   

6.
Several years ago, the anisotropic diffusion and convective transport accompanied by adiabatic deceleration were considered as the principal means for cosmic ray propagation. Particles of relatively small energies (~ 1 MeV) can propagate along the force lines of the magnetic field without scattering at distances of several astronomical units in the quiet heliosphere. The theory describing the 11-year variation of galactic cosmic ray intensity and the propagation of solar cosmic rays was founded on this basis. However, the anomalies of the 11-year variation of galactic cosmic ray intensity in 1969–1971 revealed the necessity to take into account the influence of the general electromagnetic field of the heliosphere giving rise to a rapid magnetic drift of particles. The particles drift either from the magnetic axis to the ecliptic plane (in the cycle of 1969–1980) or in the opposite direction depending on the sign of the general magnetic field of the sun. The neutral layers along which the drift velocity is comparable to the particle velocity is of great significance. However, in the presence of sector structure, the time of particle propagation along the neutral layer from the boundary of the modulation region to the earth orbit is substantially increased. Thus a marked adiabatic deceleration is here possible. The time delay observed in the recovery of proton intensities at various energies can be explained in terms of a transient phase of the interplanetary field following the polarity reversal.  相似文献   

7.
Numerical solutions are presented for the propagation of solar cosmic rays interplanetary space, including the effects of pitch-angle scattering and adiabatic focusing. The intensity-time profiles can be well fitted by a simple radial spatial diffusion equation with scattering mean-free path λfit. For low-rigidity particles the radial mean-free path so obtained is significantly larger than the mean-free path calculated from the scattering coefficient due to the inapplicability of the diffusive approximation early in the event. The well-known discrepency between λfit and the theoretical predictions may be resolved by these calculations.  相似文献   

8.
The PAMELA experiment is a multi-purpose apparatus built around a permanent magnet spectrometer, with the main goal of studying in detail the antiparticle component of cosmic rays. The apparatus will be carried in space by means of a Russian satellite, due to launch in 2005, for a three year-long mission. The characteristics of the detectors composing the instrument, alongside the long lifetime of the mission and the orbital characteristics of the satellite, will allow to address several items of cosmic-ray physics. In this paper, we will focus on the solar and heliospheric observation capabilities of PAMELA.  相似文献   

9.
Time-dependent kinetic-continuum model of the solar wind interaction with the two-component local interstellar cloud (LIC) has been developed recently [Izmodenov, V., Malama, Y.G., Ruderman, M.S. Solar cycle influence on the interaction of the solar wind with local interstellar cloud. Astron. Astrophys. 429, 1069–1080, 2005a.]. Here, we adopted this model to the realistic solar cycle, when the solar wind parameters at the Earth’s orbit are taken from space data. This paper focuses on the results related to the termination shock (TS) excursion with the solar cycle that may help to understand Voyager 1 data obtained at and after the crossing of the termination shock and to predict the time of the TS crossing by Voyager 2.  相似文献   

10.
11.
An overview is given on what we know about the cosmic ray diffusion process from the modelling of low-energy (MeV) electron transport in the heliosphere. For energies below ∼300 MeV, these electrons give a direct indication of the average mean free paths because they do not experience large adiabatic energy changes and their modulation is largely unaffected by global gradient and curvature drifts. Apart from galactic cosmic ray electrons, the jovian magnetosphere at ∼5 AU in the ecliptic plane is also a relatively strong source of MeV electrons, with energies up to ∼30 MeV. Therefore, when modelling the transport of these particles in the inner heliosphere, a three-dimensional treatment is essential. By comparing these models to observations from the Ulysses, Pioneer and Voyager missions, important conclusions can be made on e.g., the relative contributions of the galactic and jovian electrons to the total electron intensity, the magnitude of the parallel and perpendicular transport coefficients, and the time dependant treatment thereof.  相似文献   

12.
An overview is presented of magnetic-field-related effects in the solar wind (SW) interaction with the local interstellar medium (LISM) and the different theoretical approaches used in their investigation. We discuss the possibility that the interstellar magnetic field (ISMF) introduces north–south and east–west asymmetries of the heliosphere, which might explain observational data obtained by the Voyager 1 and Voyager 2 spacecraft. The SW–LISM interaction parameters that are responsible for the deflection of the interstellar neutral hydrogen flow from the direction of propagation of neutral helium in the inner heliosheath are outlined. The possibility of a strong ISMF, which increases the heliospheric asymmetry and the H–He flow deflection, is discussed. The effect of the combination of a slow-fast solar wind during solar minimum over the Sun’s 11-year activity cycle is illustrated. The consequences of a tilt between the Sun’s magnetic and rotational axes are analyzed. Band-like areas of an increased magnetic field distribution in the outer heliosheath are sought in order to discover regions of possible 2–3 kHz radio emission.  相似文献   

13.
On the dynamics of the heliosphere on intermediate and long time-scales   总被引:1,自引:0,他引:1  
A time-dependent, three-dimensional model of the dynamics of the heliosphere as a result of solar activity and a time-varying local interstellar medium is presented. The model is based on a recent version of the well known ZEUS code and employs parallel processing. It includes the solar and interstellar plasma components as well as neutral atoms, and contains the heliospheric magnetic field in a kinematic fashion. We study the dynamics of the heliosphere due to solar activity on periods of months to years up to the so-called Schwabe (11-year) cycle as well as due to time variations of the local interstellar medium, all of which have drawn increasing attention during recent years, as the significance of their direct or indirect effect on the Earth and its environment is under lively debate.  相似文献   

14.
15.
16.
Magnetic clouds are the interplanetary manifestation of coronal mass ejections, which are transient expulsions of major quantities of magnetized plasma, from the Sun toward the heliosphere. The magnetic flux and helicity are two key physical magnitudes to track solar structures from the photosphere-corona to the interplanetary medium. To determine the content of flux and helicity in magnetic clouds, we have to know their 3D structure. However, since spacecrafts register data along a unique direction, several aspects of their global configuration cannot be observed. We present a method to estimate the magnetic flux and the magnetic helicity per unit length in magnetic clouds, directly from in situ magnetic observations, assuming only a cylindrical symmetry for the magnetic field configuration in the observed cross-section of the cloud. We select a set of 20 magnetic clouds observed by the spacecraft Wind and estimate their magnetic flux and their helicity per unit length. We compare the results obtained from our direct method with those obtained under the assumption of a helical linear force-free field. This direct method improves previous estimations of helicity in clouds.  相似文献   

17.
It is possible to model the time-intensity profile of solar particles expected in space after the occurrence of a significant solar flare on the sun. After the particles are accelerated in the flare process, if conditions are favorable, they may be released into the solar corona and then into space. The heliolongitudinal gradients observed in the inner heliosphere are extremely variable, reflecting the major magnetic structures in the solar corona which extend into space. These magnetic structures control the particle gradients in the inner heliosphere. The most extensive solar particle measurements are those observed by earth-orbiting spacecraft, and forecast and prediction procedures are best for the position of the earth. There is no consensus of how to extend the earth-based models to other locations in space. Local interplanetary conditions and structures exert considerable influence on the time-intensity profiles observed. The interplanetary shock may either reduce or enhance the particle intensity observed at a specific point in space and the observed effects are very dependent on energy.  相似文献   

18.
Data from worldwide network of neutron and muon detectors are used to study 11-year variations of cosmic rays, over four solar activity cycles. We find that the recovery of the cosmic ray intensity follows one of the two distinct modes. During odd cycles recovery is completed in 6 to 8 years, but during even cycles complete recovery occurs in 2 to 3 years. Two model magnetic configurations of the heliosphere are proposed to understand these recovery modes. Implications of these models are also discussed.  相似文献   

19.
Our understanding of galactic cosmic ray (GCR) modulation has advanced greatly in the last three decades. However, we still need an appropriate knowledge of the GCR intensity gradient. Numerical simulations of the transport particle equation allow interpretation of cosmic ray intensities in the heliosphere. We use the numerical solution of the GCR transport equation during solar maximum epoch to compute the radial and latitudinal gradients. Our analysis indicates that adiabatic energy loss plays an important role in the radial distribution of GCR in the inner heliosphere, while in the outer region the diffusion and convection are the relevant processes. The latitudinal gradient is small.  相似文献   

20.
The spatial distributions of galactic and anomalous cosmic rays in the heliosphere at the solar minima of Cycles 20/22 (qA > 0) and of Cycle 21 (qA < 0) are studied, using data from IMP 8, Voyagers 1/2 and Pioneer 10. It is found that the radial dependences of intensities J can be approximated by a power of radial distance r as J  rα with a different value of a constant in the inner and outer heliosphere with a transition at a radial distance of 10–15 AU. To study the physical meaning of these radial intensity profiles we examined the rigidity dependences of the intensity gradients by determining the particle mean free paths, using a simple one-dimensional modulation model. The particle mean free path λ was assumed to be a separable function of distance of the form rγ and rigidity R of Rδ over the range of 0.5–3.0 GV in the inner and outer heliosphere. It was shown that λ of rigidity dependence of R1.6 determined for Cycle 20/22 (qA > 0) with anomalous He is about 4–5 times larger than that of Cycle 21 (qA < 0) with R0.9 at around 1 GV in the outer heliosphere, and that the radial dependences are r1.4 and r1.1, respectively, for Cycles 20/22 and for Cycle 21.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号