共查询到4条相似文献,搜索用时 0 毫秒
1.
G Strazzulla 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,19(7):1077-1084
Ion irradiation of carbon containing ices produces several effects among which the formation of complex molecules and even refractory organic materials whose spectral color and molecular complexity both depend on the amount of deposited energy. Here results from laboratory experiments are summarized. Their relevance for the formation and evolution of simple molecules and complex organic materials on planetary bodies in the external Solar System is outlined. 相似文献
2.
F Raulin J M Greenberg 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,19(7):975-978
High molecular weight organic compounds are involved in the chemistry and physics of many astrophysical and planetary objects. They are or should be present in interstellar dust, in comets and meteorites, in the Giant planets and Titan, in asteroids Triton and icy satellites. They represent a class of very complex organic material, part of which may have played a role in the origin of life on Earth. Thus they directly concern prebiotic chemistry and exobiology. 相似文献
3.
K. Liu E. Kallio R. Jarvinen H. Lammer H.I.M. Lichtenegger Yu.N. Kulikov N. Terada T.L. Zhang P. Janhunen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
As an initial effort to study the evolution of the Venus atmosphere, the influence of the solar wind density and the interplanetary magnetic field (IMF) x component (the x-axis points from Venus towards the Sun) on the O+ ion escape rate from Venus is investigated using a three-dimensional quasi-neutral hybrid (HYB-Venus) model. The HYB-Venus model is first applied to a case of the high-density (100 cm−3) solar wind interaction with Venus selected from the Pioneer Venus Orbiter observations to demonstrate its capability for the study. Two sets of simulations with a wide range of solar wind densities and different IMF x components are then performed. It is found that the O+ ion escape rate increases with increasing solar wind density. The O+ ion escape rate saturates when the solar wind density becomes high (above 100 cm−3). The results also suggest that the IMF x component enhances the O+ ion escape rate, given a fixed IMF component perpendicular to the x-axis. Finally, the results imply a higher ion loss rate for early-Venus, when solar conditions were dramatically different. 相似文献