共查询到20条相似文献,搜索用时 15 毫秒
1.
E. Kendziorra R. Staubert 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(6):135-137
The balloon payload HEXE A) is designed to observe cosmic X-ray sources in the energy range 20–250 keV. Its detectors are ‘Phoswich’ scintillators with a total sensitive area of 2300 cm2 and a cooled Ge solid state detector with an area of 100 cm2 [1]. The instrument was flown successfully in 1980 and 1981 from Palestine, Texas.Here we describe the control of the instrument and guidance of the telescope as well as the method of data retrieval and real time analysis. These tasks are performed by a ground based minicomputer (HP 1000) and onboard microprocessors (M 6800) which are linked together by data and command telemetry. 相似文献
2.
John Caldwell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(9):199-213
A discussion is given of the various capabilities and advantages of the Space Telescope observatory, scheduled for launch into Earth-orbit in 1984. The first generation instruments are described, and a detailed example for one specific observing program, an intercomparison of Uranus and Neptune, is made. The importance of an extra-solar planet search is emphasized. 相似文献
3.
T. Matsumoto M. Akiba H. Murakami 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,3(10-12)
Near-infrared diffuse radiation at 1 μm – 5 μm was observed using cold optics on board a sounding rocket. The observed surface brightness is too bright to be explained by known diffuse sources and its significant part is possibly attributed to the cosmic origin. Extragalactic background radiation thus obtained is brighter than theoretically estimated so that new energy sources at an early epoch of the universe are required. 相似文献
4.
Min Li Yunbin Yuan Baocheng Zhang Mingming Liu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(1):209-222
With the continuous deployment of Low Earth Orbit (LEO) satellites, the estimation of differential code biases (DCBs) based on GNSS observations from LEO has gained increasing attention. Previous studies on LEO-based DCB estimation are usually using the spherical symmetry ionosphere assumption (SSIA), in which a uniform electron density is assumed in a thick shell. In this study, we propose an approach (named the SHLEO method) to simultaneously estimate the satellite and LEO onboard receiver DCBs by modeling the distribution of the global plasmaspheric total electron content (PTEC) above the satellite orbit with a spherical harmonic (SH) function. Compared to the commonly used SSIA method, the SHLEO model improves the GPS satellite DCB estimation accuracy by 13.46% and the stability by 22.34%, respectively. Compared to the GPS satellite DCBs estimated based on the Jason-3-only observations, the accuracy and monthly stability of the satellite DCBs can be improved by 14.42% and 26.8% when both Jason-2 and Jason-3 onboard observations are jointly processed. Compared with the Jason-2 solutions, the GPS satellite DCB estimates based on the fusion of Jason-2 and Jason-3 observations have an improved consistency of better than 18.26% and 9.71% with the products provided by the Center for Orbit Determination in Europe (CODE) and Chinese Academy of Sciences (CAS). Taking the DCB products provided by the German Aerospace Center (DLR) as references, there is no improvement in accuracy of the GPS satellite DCB estimates based on the fusion of Jason-2 and Jason-3 observations than the Jason-2 solutions alone. A periodic variation is found in the time series of both the Jason-3 and Jason-2 onboard receiver DCB estimates. Preliminary analysis of the PTEC distribution based on the estimated SH coefficients are also presented. 相似文献
5.
M. Walter G. Weigelt 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(3):169-171
Roll deconvolution is a speckle method that can improve the resolution of the 2.4m Space Telescope at short UV wavelengths. In digital simulations we have investigated the dependence of the signal-to-noise ratio of the reconstruction on photon noise (104 to 10 photons per pixel), the object size, the telescope point spread function and guiding errors. 相似文献
6.
M.I. Panasyuk M.V. Teltsov V.I. Shumshurov V.V. Tsetlin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,21(12):1635-1638
Dose variations, associated with the 11-year solar activity cycle, seasonal variations of particle fluxes in the Earth's radiation belts at the station orbit, and solar proton events are studied, using prolonged measurements of radiation doses inside orbital station Mir. Daily averages of radiation doses during the declining phase of the 22nd solar cycle and during transition to the 23rd solar activity cycle reached very large values for astronauts and significantly exceed the values calculated according to existing models. 相似文献
7.
Myrtille Laas-Bourez Sébastien Wailliez Florent Deleflie Alain Klotz Dominique Albanese Nathalie Saba 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The MéO (for Métrologie Optique) telescope is the Satellite and Lunar Laser Ranging (SLR) dedicated telescope of Observatoire de la Côte d’Azur (France) located at plateau de Calern. The telescope uses an altazimuth mount. The motorization of the mount has a capability of 6 deg/s allowing the follow up of Low Earth Orbits (LEO) satellites, as well as Medium Earth Orbits (MEO) and geostationary (GEO) satellites, and the Moon. The telescope has a primary mirror of 1.54 m. It uses a Nasmyth focus equipped with an EMCCD camera. The telescope field of view, defined by the equivalent focal length and the size of the camera, is currently 3.4 arcmin × 3.4 arcmin. 相似文献
8.
K. Yoshioka G. Murakami I. Yoshikawa J.-L. Maria J.-F. Mariscal N. Rouanet P.-O. Mine E. Quemerais 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
BepiColombo, a mission of ESA (European Space Agency) in cooperation with JAXA (Japan Aerospace Exploration Agency), will explore Mercury, the planet closest to the Sun. BepiColombo will launch in 2014 on a journey lasting up to six and a half years; the data gathering phase should occupy a one year nominal mission, with a possible extension of another year. The data which will be brought back from the orbiters will tell us about the Hermean surface, atmospheric composition, and magnetospheric dynamics; it will also contribute to understanding the history and formation of terrestrial planets. The PHEBUS (Probing of Hermean Exosphere by Ultraviolet Spectroscopy) instrument will be flown on MPO: Mercury Planetary Orbiter, one of the two BepiColombo orbiters. The main purpose of the instrument is to reveal the composition and the distribution of the exosphere of Mercury through EUV (Extreme Ultraviolet: 55–155 nm) and FUV (Far Ultraviolet: 145–315 nm) measurements. A consortium composed of four main countries has been formed to build it. Japan provides the two detectors (EUV and FUV), Russia implements the scanning system, and France and Italy take charge of the overall design, assembly, test, integration, and also provide two small NUV (Near Ultraviolet) detectors (for the light from calcium and potassium molecules). An optical prototype of the EUV detector which is identical to the flight configuration has been manufactured and evaluated. In this paper, we show the first spectra results observed by the EUV channel optical prototype. We also describe the design of PHEBUS and discuss the possibility of detecting noble gases in Mercury’s exosphere taking the experimental results so far into account. 相似文献
9.
F. Perotti A. Della Ventura G. Villa R.C. Butler G. Di Cocco R.E. Baker J.N. Carter A.J. Dean R.I. Hayles 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(4):117-119
During a balloon flight of the MISO telescope on 1980 May 17, the Crab Nebula and the Seyfert galaxy NGC 4151 were studied over the photon energy range 0.03 –16 MeV. The photon spectrum of the Crab Nebula was measured up to ~ 2 MeV. No gamma-ray emission from NGC 4151 was detected on this occasion. 相似文献
10.
Matthew Wilkinson Graham Appleby 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The navigation and geodetic satellites that orbit the Earth at altitudes of approximately 20,000 km are tracked routinely by many of the Satellite Laser Ranging (SLR) stations of the International Laser Ranging Service (ILRS). In order to meet increasing demands on SLR stations for daytime and nighttime observations, any new mission needs to ensure a strong return signal so that the target is easily acquirable. The ILRS has therefore set a minimum effective cross-section of 100 million square metres for the on-board laser retro-reflector arrays (LRAs) and further recommends the use of ‘uncoated’ cubes in the arrays. Given the large number of GNSS satellites that are currently supported by SLR, it is informative to make an assessment of the relative efficiencies of the various LRAs employed. This paper uses the laser ranging observations themselves to deduce and then compare the efficiencies of the LRAs on the COMPASS-M1 navigation satellite, two satellites from the GPS and three from the GLONASS constellations, the two GIOVE test satellites from the upcoming Galileo constellation, the two Etalon geodetic spheres and the geosynchronous communications test satellite, ETS-8. All the LRAs on this set of satellites employ back-coated retro-reflector cubes, except those on the COMPASS-M1 and ETS-8 vehicles which are uncoated. A measure of return signal strength, and thus of LRA-efficiency, is calculated using the laser-range full-rate data archive from 2007 to 2010, scaled to remove the effects of variations in satellite range, atmospheric attenuation and retro-reflector target total surface area. Observations from five SLR stations are used in this study; they are Herstmonceux (UK), Yarragadee (Australia), Monument Peak and McDonald (USA) and Wettzell (Germany). Careful consideration is given to the treatment of the observations from each station in order to take account of local working practices and system upgrades. The results show that the uncoated retro-reflector cubes offer significant improvements in efficiency. 相似文献
11.
T. J. -L. Courvoisier A. Orr P. Bü hler A. Zchnder R. Henneck F. Stauffacher J. Biakhowski N. Schlumpf W. Schoeps A. Mchedlishvili R. Sunyaev V. Arefev A. Yascovich G. Babalyan M. Pavlinsky J. P. Delaboudini re T. Carone O. Siegmund J. Warren D. Leahy N. Salaschenko J. Platonov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1993,13(12):299-302
EUVITA is a set of 8 extreme UV normal incidence imaging telescopes, each of them sensitive in a narrow band (λ/Δλ = 15 to 80), centered at wavelengths between 50 and 175 Å. Each telescope has an effective area of a few cm2; a field of view of 1.2° and a spatial resolution of 10 arcsec.
EUVITA will be flown on the Russian mission SPECTRUM X-G. This satellite will be launched in a highly eccentric orbit with a period of 4 days, allowing long, uninterrupted observations (e.g. 105 seconds). EUVITA's narrow spectral bands allow the measurement of source parameters such as temperature or power law index as well as interstellar absorption, and will resolve groups of strong lines emitted by optically thin hot plasmas. 相似文献
12.
E.L. Chupp 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(4):133
The Gamma Ray Spectrometer on the SMM satellite has observed solar cosmic energetic photon transients since 17 February 1980. Using the data available through 1981, new results have been obtained on ion acceleration phenomena in solar flares. It now is evident that both ion and electron acceleration can take place impulsively, simultaneously or within seconds of one another. That the impulsive acceleration process can produce ions with energies as high as GeV/nucleon is directly shown by observations of neutrons at the Earth with energies of several hundred MeV. These two facts and the relative timing of hard X-ray emissions provide new constraints on solar flare particle acceleration theory. New flare spectra have also been observed showing new nuclear γ-ray lines not previously observed from 24Mg, 20Ne and 56Fe as well as from other elements. These spectral observations provide new information on the relative abundances of the accelerated and target nuclei. Following a review of the solar data and implications for flare theories we will also give a brief review of the results obtained on nonsolar γ-ray bursts. Most such bursts have photon spectra extending to MeV energies but with little, if any, evidence for spectral features. 相似文献
13.
E. Bozzo P. Romano C. Ferrigno P. Esposito V. Mangano 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Supergiant fast X-ray transients are a subclass of high mass X-ray binaries displaying a peculiar and still poorly understood extreme variability in the X-ray domain. These sources undergo short sporadic outbursts (LX∼ 1036–1037 erg s−1), lasting few ks at the most, and spend a large fraction of their time in an intermediate luminosity state at about LX∼ 1033–1034 erg s−1. The sporadic and hardly predictable outbursts of supergiant fast X-ray transients were so far best discovered by large field of view (FOV) coded-mask instruments; their lower luminosity states require, instead, higher sensitivity focusing instruments to be studied in sufficient details. In this contribution, we provide a summary of the current knowledge on supergiant fast X-ray transients and explore the contribution that the new space mission concept LOFT, the Large Observatory for X-ray Timing, will be able to provide in the field of research of these objects. 相似文献
14.
R. A. Kimble A. F. Davidsen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1993,13(12):33-42
The Hopkins Ultraviolet Telescope (HUT) was flown aboard the space shuttle Columbia as part of the Astro-1 mission during December 1990. During the nine-day flight, HUT carried out 3 Å resolution spectrophotometry of a wide variety of astronomical objects, including a number of stellar targets, in the 912–1860 Å range of the far ultraviolet. A few nearby stars were observed in the 415–912 Å range of the extreme ultraviolet as well. For nearly all of these targets, the spectra obtained by HUT are the first ever obtained in the spectroscopically rich region between Lyman (1216 Å) and the Lyman limit (912 Å). Here, we present highlights of the results obtained by HUT in a variety of areas of stellar astronomy. 相似文献
15.
Vipin K. Yadav Nandita Srivastava S.S. Ghosh P.T. Srikar Krishnamoorthy Subhalakshmi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(2):749-758
The Aditya-L1 is first Indian solar mission scheduled to be placed in a halo orbit around the first Lagrangian point (L1) of Sun-Earth system in the year 2018–19. The approved scientific payloads onboard Aditya-L1 spacecraft includes a Fluxgate Digital Magnetometer (FGM) to measure the local magnetic field which is necessary to supplement the outcome of other scientific experiments onboard. The in-situ vector magnetic field data at L1 is essential for better understanding of the data provided by the particle and plasma analysis experiments, onboard Aditya-L1 mission. Also, the dynamics of Coronal Mass Ejections (CMEs) can be better understood with the help of in-situ magnetic field data at the L1 point region. This data will also serve as crucial input for the short lead-time space weather forecasting models.The proposed FGM is a dual range magnetic sensor on a 6?m long boom mounted on the Sun viewing panel deck and configured to deploy along the negative roll direction of the spacecraft. Two sets of sensors (tri-axial each) are proposed to be mounted, one at the tip of boom (6?m from the spacecraft) and other, midway (3?m from the spacecraft). The main science objective of this experiment is to measure the magnitude and nature of the interplanetary magnetic field (IMF) locally and to study the disturbed magnetic conditions and extreme solar events by detecting the CME from Sun as a transient event. The proposed secondary science objectives are to study the impact of interplanetary structures and shock solar wind interaction on geo-space environment and to detect low frequency plasma waves emanating from the solar corona at L1 point. This will provide a better understanding on how the Sun affects interplanetary space.In this paper, we shall give the main scientific objectives of the magnetic field experiment and brief technical details of the FGM onboard Aditya-1 spacecraft. 相似文献
16.
Ondřej Ploc Lembit Sihver Dmitry Kartashov Vyacheslav Shurshakov Raisa Tolochek 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
“Protective curtain” was the physical experiment onboard the International Space Station (ISS) aimed on radiation measurement of the dose – reducing effect of the additional shielding made of hygienic water-soaked wipes and towels placed on the wall in the crew cabin of the Service module Zvezda. The measurements were performed with 12 detector packages composed of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs) placed at the Protective curtain, so that they created pairs of shielded and unshielded detectors. 相似文献
17.
H. Awaki K. Heike Y. Misao Y. Tawara Y. Ogasaka H. Kunieda H. Ohmori W. Lin S. Moriyasu Y. Ueno S. Morita K. Katahira C. Liu H. Honda S. Shioya 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(12):2678-2681
We have built a prototype of thin-foil substrates for the future mission with a large X-ray telescope. In future X-ray missions, the understanding of the early universe to reveal the evolution of the universe will become an important issue. For this purpose, large telescopes with high-spatial resolution up to 10′′ are required. Using a stamping die with high accuracy, we have successfully press-formed thin-foil substrates into an almost accurate form of the Wolter type-I optics, which reflect X-rays twice with their confocal paraboloidal and hyperboloidal reflectors. The accuracy of the shape has reached to <15 μm. 相似文献
18.
Garry E. Hunt Vivien Moore 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(3):181-188
Space Telescope (ST) observations of Jupiter and Saturn will offer a unique opportunity for monitoring their changing meteorological characteristics. They will provide higher spatial and temporal resolution for composition and vertical structure studies than have been available to date. We have simulated the planetary camera observations of Jupiter and Saturn by Voyager images of the appropriate spatial scale. With this data set we have investigated the meteorological properties of these atmospheres which can be studied at these scales. In addition we have considered the advances obtainable with the high resolution spectrometer on ST compared with observations from ground-based and other Earth-orbiting satellites. These studies will provide insight into the scientific gain and possible problems in the use of ST for planetary studies. 相似文献
19.
T. Kohno K. Munakata T. Imai M. Matsuoka 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(12):75-78
A computer simulation was carried out to evaluate the basic characteristics of a Δ E×E cosmic ray telescope consisting of 23 solid state detectors including 3 position sensitive detectors with large effective area. Based on the simulation, the geometric factor of the telescope is deduced to be as large as 22.5 cm2sr, almost independent of charge and energy concerned. The energy ranges to be covered by the telescope are, for example, 18–98 MeV/n for Li and 56–339 MeV/n for Fe. By analyzing simulated data, the mass resolution for iron in the overall energy range covered by the telescope is estimated as about 0.22 amu in standard deviation. The expected counting rates and mass-histograms are simulated for Galactic cosmic rays and solar energetic particles. 相似文献
20.
Masamitsu Ohyama Kazunari Shibata Takaaki Yokoyama Masumi Shimojo 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,19(12):1849-1852
Yohkoh soft X-ray observations have revealed coronal X-ray plasma ejections and jets associated with solar flares. We have studied an X-ray plasma ejection on 1993 November 11 in detail, as a typical example of X-ray plasma ejections (possibly plasmoids expected from the reconnection model). The results are as follows: (1) The shape of the ejected material is a loop before it begins to rise. (2) The ejecta are already heated to 5 – 16 MK before rising. (3) The kinetic energy of the ejecta is smaller than the thermal energy content of the ejecta. (4) The thermal energy of the ejecta is smaller than that of the flare regions. (5) The acceleration occurs during the impulsive phase. These results are compared with the characteristics of X-ray jets, and a possible interpretation (for both plasmoids and jets) based on the magnetic reconnection model is briefly discussed. 相似文献