首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 322 毫秒
1.
本论文基于光流优化算法,发展了一种适用于水流的纹影特性光流测速算法。在存在密度梯度的条件下,纹影图像的亮度反映了流场折射率的一阶导数,结合纹影亮度方程和流体连续性方程推导了适用于水的物理约束条件,采用二阶散度–旋度正则化作为空间平滑约束条件,基于两个约束条件构建了能量方程,通过变分法对能量方程进行最小化求解获得速度场。以热羽流为例,使用该算法对浮力羽流纹影图像进行了计算,并与互相关算法和传统光流算法的结果进行了比较。结果显示:本研究提出的算法能更好地体现流动特性,得到更高的空间分辨率。该方法基于纹影图像,无需在流场中添加示踪粒子,对流场无干扰,具有结构简单、使用方便等优点。  相似文献   

2.
根据高速流动显示实验研究对高帧频图像采集设备的需要,基于分幅式光路设计原理,结合快响应像增强器和低照度CCD相机,研制了一套兆赫兹采样的高帧频数字相机.利用高帧频数字相机,开展了高速流动显示实验研究:基于高帧频数字相机,结合纹影技术,在激波管上针对方块、凹槽模型,开展了高速流动显示实验,获取了运动激波与模型边界相互作用的序列图像,观察到湍流涡随时间演化发展的过程.结合一台输出功率为8W的连续激光光源和高帧频数字相机,建立了一套高速片光散射流动显示系统,获取了喷流的米氏散射序列图像.实验证明,基于高帧频数字相机的纹影及片光散射技术具备开展高速流动显示实验研究的能力.  相似文献   

3.
基于双光场相机的高分辨率光场三维PIV技术   总被引:1,自引:1,他引:0       下载免费PDF全文
光场相机粒子图像测速(Light Field Particle Image Velocimetry,LF-PIV)是一种近几年新发展起来的流动测试手段,能够仅通过单个光场相机测量3D-3C瞬态速度场,简化了三维流场测量的实验复杂度,特别是能实现受限空间的三维速度场测量。然而这一技术尚存在一些不足:由于光场相机沿景深方向的空间分辨率较低,沿该方向的速度测量精度低于垂直于景深方向的测量精度。本文尝试从硬件角度入手,发展一种双光场相机流动测试技术,通过增大对示踪粒子的观察视角,来提高光场三维测量系统沿景深方向的空间分辨率。基于乘积代数迭代技术(Multiplicative Algebraic Reconstruction Technique,MART),开发了针对双光场相机的粒子三维重构算法。分别利用直接数值模拟(Direct Numerical Simulation,DNS)水射流的数字合成图像与低速水射流涡环的实验图像,将双光场相机的测量结果与单光场相机的测量结果进行对比分析研究。结果表明双光场相机与单光场相机相比显著提高了相机沿景深方向的测量精度。  相似文献   

4.
在三维粒子成像测速 (PIV)方面 ,可运用体积光照明同时从不同光轴用多个照相机获得PIV图像 ,如何根据这些不同光轴获得的PIV图像确定出粒子物点的空间位置是实现三维粒子成像测速的前提。基于此 ,提出了根据多幅不同光轴的PIV图像的粒子像斑实现粒子物点三维定位的透视成像定位原理和方法。精确确定透视平面与透视中心在空间的位置是实现粒子物点三维定位的关键 ,直接测定透视中心 (照相机的光学中心 )和透视平面在空间的精确位置用常规的测量手段和方法难以奏效 ,因而针对透视图像成像特征及规律进行了较为深入地研究探讨 ,这对于寻求精确计测透视中心和透视平面空间位置的方法有着重要意义。作为实例 ,还给出了两光轴夹角为 90°情况下实现粒子物点三维定位的一系列具体方法和有关算法及定量关系。  相似文献   

5.
针对复杂固体边界三维流场的 PIV 测试应用,以及流固耦合实验研究中流场和固体结构特征的瞬态同步测试需求,发展了一种基于双相机布置形式的任意三维边界识别算法以精确获取三维表面几何信息;并以基于MLOS-SMART 三维粒子场重构的 Tomo-PIV 算法计算三维速度矢量场,可同步获取三维表面结构运动/变形信息和三维瞬态速度场。这一边界识别算法基于 SURF(加速稳健特征)模式识别算法进行三维曲面重构,可以确定流场中三维物体结构的边界特征。论文采用双相机布置方式获取了三种不同曲率的圆柱曲面图像,验证了所发展的三维边界识别算法的准确性。最后以圆柱绕流 Tomo-PIV 数字合成粒子图像序列为验证对象,采用所发展的边界识别算法和 Tomo-PIV 算法分别高质量地计算出圆柱曲面信息和三维速度场。  相似文献   

6.
光流测量技术作为一种新的空气动力学实验技术,以其像素级分辨率的矢量场测量优势获得广泛的应用。光流测量技术使用光流约束方程,配合平滑限定条件,可以进行速度场测量,获得高分辨率的全局矢量场。首先通过研究积分最小化光流测速理论和算法,采用C++编写光流速度测量程序,然后通过3种典型人工位移图像对光流计算程序进行验证,并将结果和标准位移分布进行比对分析,以指导如何在实际应用中获得高精度光流速度场,最后进行小型风洞后向台阶实验,利用高速相机拍摄示踪粒子图像,使用光流计算程序获得速度矢量场,同采用互相关算法的粒子图像测速计算结果进行比较,体现出光流计算方法像素级分辨率的矢量场测量优势。  相似文献   

7.
通过三维粒子重构获取粒子场的分布情况是层析粒子图像测速的关键步骤,有限二维投影下的三维粒子重构是一个欠定的反问题,其精确解往往很难得到.一般情况下,可以通过优化方法得到近似解.为了获取质量更高的粒子场并用于层析粒子图像测速,提出了一种基于卷积神经网络(Convolutional Neural Networks,CNN)...  相似文献   

8.
超声速光学头罩流场的PIV研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在马赫数Ma=3. 8超声速风洞中.采用PIV(Particle Image Velocimetry,粒子图像测速)技术测量了超声速光学头罩流场的速度分布.PIV技术应用于超声速流场时,对系统的硬件配备、示踪粒子的跟随性以及PIV算法的精度有很高的要求.本文PIV系统选用高精度的同步控制器和高能量激光器;以纳米级粒径的粒子作为示踪粒子,通过斜激波响应实验分析了其在超声速流场中的跟随性;并采用多种高精度速度场算法对粒子图像进行处理.实验结果表明,示踪粒子在超声速流场中有很好的跟随性,采用的高精度速度场算法能够很好地反映超声速光学头罩流场的速度分布.  相似文献   

9.
通过支板尾流结构显示实验,研究了使用双截面聚焦纹影技术显示复杂流动的可行性.双截面聚焦纹影系统能在一次实验中得到两个不同位置的聚焦纹影图片,并能保证两张图片反映的是同一时刻的流场结构.比较了普通纹影与双截面聚焦纹影系统捕捉三维流场结构的能力,证明聚焦纹影技术显示复杂流场是有潜力的.为使之能够清晰地反映复杂流场的三维特征,还需在缩小聚焦区厚度和提高信号质量方面做工作.  相似文献   

10.
纹影方法是重要的流场可视化手段,实验前需要对纹影系统进行细致调节,物平面的选择与刀口的设置是影响纹影图像信息的关键环节.以穿过火焰的光线偏折特性和成像记录为例,分析并比较了不同物平面下所获图像特征,说明了在撤掉刀口的情况下消除图像的阴影效果是确定纹影物平面的有效方法.基于纹影法的工作原理和刀口进给量与纹影图像的对应关系,分别讨论了刀口方向选择、焦点位置确定和刀口切入量设置.为合理使用纹影系统进行流场可视化测量提供借鉴和参考.  相似文献   

11.
基于层析原理的湍流火焰三维测量综述   总被引:1,自引:1,他引:0       下载免费PDF全文
实现对湍流火焰的三维测量是人们长期追求的目标之一。近十年,随着高速相机、激光、数值算法的高速发展,高时空分辨的三维燃烧诊断成为可能。对基于层析原理的三维燃烧诊断技术的发展与应用现状进行综述:首先介绍层析技术的原理以及相关算法的发展情况;其次对实现三维层析燃烧诊断的测量系统进行综述;再次,按照光学信号的分类,分别介绍层析技术结合发射光谱、激光诱导荧光、阴影/纹影、Mie散射等进行三维燃烧测量的应用情况;最后,从实际应用的角度出发,对层析三维燃烧诊断技术的发展提出展望。  相似文献   

12.
层析粒子图像测速技术(Tomographic Particle Image Velocimetry,Tomo-PIV)作为一种瞬时的三维流场速度测量技术,能够为具有强非定常性及强三维空间性的复杂流动提供详细的数据支撑.对近年来该技术在国内外的发展及应用进行了全面的综述.首先介绍了层析粒子图像测速技术的工作原理和技术特点...  相似文献   

13.
作为一种新兴的体三维粒子图像测速技术,光场单相机三维粒子图像测速技术(Single-Camera Light-Field Particle Image Velocimetry,LF-PIV)能够仅用单个相机获得三维速度场,其结果已在许多复杂三维流动测量中得到验证。LF-PIV的优势主要在于其紧凑简便的硬件设备以及对光学窗口较宽松的要求。应用LF-PIV技术对一个自相似的逆压湍流边界层(Adverse Pressure Gradient Turbulent Boundary Layer,APG-TBL)进行测量,该实验在澳大利亚莫纳什大学(Monash University)航空航天与燃烧湍流研究实验室(Laboratory for Turbulence Research in Aerospace and Combustion,LTRAC)水洞中完成。实验对远、近壁面测量所得到的各600组瞬态三维流场数据进行分析验证,并与相同工况下的2D-PIV实验结果对比,证明基于DRT-MART重构技术的LF-PIV能够进行基本的湍流边界层测量。  相似文献   

14.
采用试验方法研究了不同当量比条件下的氢气燃烧流场结构和火焰传播规律。采用壁面测压、纹影、差分干涉、火焰自发光照相以及OH-PLIF等测量手段获取流场信息,并发展了纹影、差分干涉和PLIF同步测量的试验方法,获取了流动结构和火焰的耦合测量结果。结果表明:在所研究的5个状态中,当氢气当量比大于0.17时,燃烧流场结构不稳定,火焰分布呈现破碎状,火焰在燃烧室上下壁面之间来回传播;当氢气当量比小于或等于0.17时,燃烧流场结构稳定,火焰呈现连续分布,火焰稳定分布于凹槽下部剪切层内。  相似文献   

15.
在高超声速风洞试验中,用普通纹影仪配上单次亚微秒火花光源,组成亚微秒火花聚焦阴影系统,同时采用延时同步器控制闪光时间,在同一次吹风试验中,用普通相机拍摄出振荡频率达3000Hz 的激波运动周期过程。文中提供的一组照片清晰地显示出激波、分离区及激波与边界层的干扰,可以看出激波传播状况,这对分析研究是很有用处的。  相似文献   

16.
圆柱尾流场的 Tomo-PIV 测量   总被引:1,自引:1,他引:1       下载免费PDF全文
层析粒子图像测速(Tomo-PIV)是一种先进的光学测量技术,能够定量获取三维体视流场结构,可作为诸如湍流、多涡系干扰等三维复杂流场的有效测量手段。为了实现该技术在风洞模型测量中的应用,研究了工程应用和数据处理方法。在中航工业气动院 FL-5风洞,选取12mm 直径的圆柱体作为试验模型,应用 Tomo-PIV 技术测量了圆柱三维尾流场,通过解决体光源引入、示踪粒子投放和现场标定等关键技术以及对数据处理方法的研究,成功获得了圆柱体后方典型的三维卡门涡流场。测量区域约95mm×70mm×8.5mm,粒子图像分辨率达到20 pixels/mm,包含数万个速度矢量数据,实现了 Tomo-PIV 的风洞试验验证。  相似文献   

17.
结合开发国产化软件的实践,详细论述了开发CAD/CAM集成系统中的几个关键技术:包括用户界面设计、系统结构设计、数据管理、信息处理、图形支持软件、关键算法以及软件开发的工程化管理等几个方面。从软件工程的角度出发,分析了为适应大规模CAD/CAM系统开发中并行作业的需要,用户界面设计、信息处理设计、图形支持软件的设计方法和原则。为实现CAD/CAM集成系统的可修改性、可扩充性和可移植性,作者直接将面  相似文献   

18.
更大尺度风洞和试验模型以及更长射流的流场测量,对流场显示的视场尺度提出了更高要求.设计和验证两种基于发散光反射式布局的大视场显示方法,分别为反射式聚焦纹影方法和反射式阴影方法.通过改进源格栅和光源,在实验室搭建了一套反射式聚焦纹影显示装置,获得了直径约1.5 m的视场结果.视场均匀性和试验条件下的最短曝光时间表明该方法...  相似文献   

19.
基于层析PIV的湍流边界层展向涡研究   总被引:2,自引:2,他引:0       下载免费PDF全文
层析PIV是一种现代激光测速技术,能实现三分量空间体内三分量(3D3C)速度场的测量。应用层析PIV测量Reτ=1768的平板湍流边界层,得到150个瞬时速度场,测量体的大小为80mm×16mm×45mm。旋涡强度λci 准则用来进行涡识别,而旋涡强度在展向的投影λzci 被用来识别展向涡。根据λzci 的连通域得到展向涡位置后,统计了展向涡沿法向的变化规律,并给出了在流向-法向平面内高低速区域和正负展向涡空间位置的关系。统计结果表明:随着法向高度的增加,展向涡的强度逐渐降低;负展向涡的流向平均速度高于正展向涡,且流向速度与法向速度有很强的依赖性;在小尺度范围内,流向-法向平面内的高低速流动区域与正负展向涡的空间位置密切相关。  相似文献   

20.
采用接触式探针和粒子图象测速技术(PIV)对导叶式离心泵径向导叶内流场的流动特性进行了研究。基于圆柱形微型三孔探针测试结果对5种流量下导叶的压力恢复能力进行了评估,测孔位置覆盖了导叶进出口截面和主线截面。压力恢复系数的理论值和试验值表明当流量大于导叶设计流量时导叶内产生了较大的静压损失。2C/2D PIV 可视化试验的研究结果表明大流量下导叶叶片压力面发生了流动分离。设计了不同参数组合的涡流发生器来对流动分离现象进行控制,试验研究了6种方案对模型泵大流量工况下性能的影响,获得一组最佳方案,并分析了采用该方案后导叶内的流动特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号