首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
周敬  胡军  张斌 《宇航学报》2020,41(2):154-165
针对圆型限制性三体问题共线平动点附近周期/拟周期轨道下的相对运动问题,提出一种新的、通用的解析研究方法。在周期/拟周期轨道近似解析解的基础上,结合微分修正方法,获得了精确的周期/拟周期轨道。对周期/拟周期轨道的单值矩阵进行分析,同时借鉴Floquet理论核心思想,建立了六个相对运动模态,并将相对运动表示为六个相对运动模态的线性组合,获得了相对运动的近似解析解。最后在地-月系统圆型限制性三体问题下,以L1点作为研究对象,分别以Halo轨道、Lissajous轨道和Lyapunov轨道为参考轨道,对相对运动模态和相对运动进行仿真分析,说明了相对运动模态的正确性以及相对运动近似解析解的有效性。  相似文献   

2.
曹静  袁建平  罗建军 《宇航学报》2013,34(7):909-916
椭圆轨道相对运动模型的线性化导致其在大尺度相对运动应用中精度不能满足需求。针对任意椭圆轨道上的大尺度航天器编队最优重构问题,提出一种基于椭圆轨道非线性相对运动模型的近似解析求解方法。首先通过变分法建立了非线性最优重构问题的数学模型;然后采用摄动法,以偏近点角为积分变量求得了不含特殊积分的解析开环最优控制,有效地避免了真近点角域下最优控制解所含有的特殊积分。仿真验证了所求最优控制的有效性和优越性,结果表明在相对运动尺度较大时,相比基于椭圆轨道线性化模型的最优控制,在燃耗保持相近的情况下,所求非线性控制有效地降低了重构误差。  相似文献   

3.
Akhmetshin  R. Z. 《Cosmic Research》2004,42(3):238-249
Low-thrust flights from high-elliptic orbits are of considerable interest, since they allow one to decrease (compared to high-thrust flights) the propulsion consumption and to reduce the flight duration. At the same time, in comparison with the spiral unwinding flights from low near-circular orbits, this scheme minimizes the harmful effect of the radiation belts. Based on the maximum principle, the problem of optimization is reduced to a two-point boundary value problem, which is solved numerically using the modified Newton method. A method is suggested to obtain the initial approximation for solving the boundary value problem. The method takes advantage of the idea of transition from an approximately optimal trajectory to the optimal one. Two problems, which have different low-thrust models, are considered: one with permanently acting low thrust and the other with the possibility of turning it on/off. In both cases no restrictions are imposed on the thrust direction. A comparison of these problems is made. We investigated (i) what gain in the final mass can be attained when passing from the first to the second problem, (ii) at the cost of what loss in flight duration this can be achieved, and (iii) what changes in the optimal program of control must be done in this case.  相似文献   

4.
The particle swarm optimization (PSO) technique is a population-based stochastic method developed in recent years and successfully applied in several fields of research. It mimics the unpredictable motion of bird flocks while searching for food, with the intent of determining the optimal values of the unknown parameters of the problem under consideration. At the end of the process, the best particle (i.e. the best solution with reference to the objective function) is expected to contain the globally optimal values of the unknown parameters. The central idea underlying the method is contained in the formula for velocity updating. This formula includes three terms with stochastic weights. This research applies the particle swarm optimization algorithm to the problem of optimizing impulsive orbital transfers. More specifically, the following problems are considered and solved with the PSO algorithm: (i) determination of the globally optimal two- and three-impulse transfer trajectories between two coplanar circular orbits; (ii) determination of the optimal transfer between two coplanar, elliptic orbits with arbitrary orientation; (iii) determination of the optimal two-impulse transfer between two circular, non-coplanar orbits; (iv) determination of the globally optimal two-impulse transfer between two non-coplanar elliptic orbits. Despite its intuitiveness and simplicity, the particle swarm optimization method proves to be capable of effectively solving the orbital transfer problems of interest with great numerical accuracy.  相似文献   

5.
Optimization of Multi-Orbit Transfers between Noncoplanar Elliptic Orbits   总被引:1,自引:0,他引:1  
Petukhov  V. G. 《Cosmic Research》2004,42(3):250-268
Using the maximum principle formalism, the problem of optimizing interorbital transfer between two noncoplanar elliptic orbits is reduced to solution of a boundary value problem for a system of ordinary differential equations. In order to solve the resulting boundary value problem numerically, the numerical homotopic method or modified Newton's method is used. When solving the boundary value problem, the right-hand sides of differential equations of motion are averaged numerically. Efficient software is developed, and a large number of optimal trajectories are calculated using it. As a result of analysis of these numerical data, new high-quality results are obtained. Specifically, a bifurcation of optimal solutions is found, the existence of critical inclination is demonstrated, and a partial classification of the structure of optimal control is performed.  相似文献   

6.
夏存言  张刚  耿云海  周斯腾 《宇航学报》2022,43(11):1522-1532
在航天器轨道设计问题中,将惯性空间中经典的吉布斯三矢量定轨方法拓展到相对运动空间中,给出了一种相对运动条件下的三矢量定轨方法。针对已知轨道的目标航天器,以及二个或三个给定的空间相对位置,基于相对运动方程,提出了设计跟随航天器飞行轨道的数值方法。以轨道面共面或异面,以及目标航天器轨道形状为椭圆或圆,将问题分为四种情况进行约束条件和自由变量个数的分析讨论。对于自由变量个数多于约束方程的情况,额外给定周期重访约束,将各种情况下的特定相对位置访问问题转化为一至二维的非线性方程(组)求解问题。对一维方程求解采用分段黄金分割+割线法进行快速求解;对二维方程组通过网格法搜索迭代初值并通过牛顿迭代快速求解。进一步基于线性模型的解,采用微分修正方法求解了各情况下J2摄动模型下的结果。数值算例验证了提出方法的正确性及有效性。  相似文献   

7.
8.
Vetlov  V. I.  Novichkova  S. M.  Sazonov  V. V.  Chebukov  S. Yu. 《Cosmic Research》2000,38(6):588-598
A mode of motion of a satellite with respect to its center of mass is studied, which is called the biaxial rotation in the orbit plane. In this mode of rotation, an elongated and nearly dynamically symmetric satellite rotates around the longitudinal axis, which, in turn, rotates around the normal to the plane of an orbit; the angular velocity of rotation around the longitudinal axis is several times larger than the orbital angular velocity, deviations of this axis from the orbit plane are small. Such a rotation is convenient in the case when it is required to secure a sufficiently uniform illumination of the satellite's surface by the Sun at a comparatively small angular velocity of the satellite. The investigation consists of the numerical integration of equations of the satellite's motion, which take into account gravitational and restoring aerodynamic moments, as well as the evolution of the orbit. At high orbits, the mode of the biaxial rotation is conserved for an appreciable length of time, and at low orbits it is destroyed due to the impact of the aerodynamic moment. The orbit altitudes and the method of constructing the initial conditions of motion that guarantee a sufficiently prolonged period of existence of this mode are specified.  相似文献   

9.
A new set of relative orbit elements is strictly defined through spherical geometry. The exact transformation equations between the new relative orbit elements and classical-orbital elements are derived. A new relative motion model with no singularity problem is derived based on the relative orbit elements, which are suitable for both elliptical and circular reference orbits. The in-plane and out-of-plane relative motion can be completely decoupled based on the new model. The inverse transformation of state transfer matrix is obtained to analyze perturbation effects and control strategy. The geometric characteristics of relative motion can be easily described using the relative eccentricity/inclination vector method. The proposed method and conclusions are validated by simulation through some typical examples. This paper improves the basic theory of relative orbit elements and unifies the expressions of the elliptical and near-circular close relative motion.  相似文献   

10.
The problem of optimal control over many-revolution spacecraft orbit transfers between circular coplanar orbits of satellites is considered. The spacecraft flight is controlled by a thrust vector of a jet engine with restricted thrust (JERT). The mass expenditure is minimized at a limited time of flight. The optimal control problem is solved based on the maximum principle. The boundary value problem of the maximum principle is solved numerically using the shooting method. A modified computation scheme of the shooting method is suggested (multi-point shooting), as well as a method (correlated with the scheme) of choosing the initial approximation with the use of a solution to the optimization problem in the impulse formulation. The scheme and method allow one to construct many-revolution spacecraft orbit transfers.  相似文献   

11.
张拓  高晓光  樊昊 《航天控制》2012,30(2):51-56
针对卫星在非开普勒轨道下的运动特征,提出了研究卫星交会变轨决策的方法。首先,在Hill坐标下,采用比例导引方法求解卫星进行变轨机动时所需要的速度增量。然后,再通过Lagrange插值算法解出卫星在任意特征点上变轨机动所需要的速度增量,根据数字仿真得出大量的仿真数据并画出满足变轨决策条件的决策曲面。最后,对决策曲面的涵义做出分析,说明了该方法对于研究非开普勒轨道下卫星变轨决策问题具有一定的意义。  相似文献   

12.
Levskii  M. V. 《Cosmic Research》2004,42(4):414-426
The problem of optimal control of a three-dimensional turn of a spacecraft is considered and solved. The turn is performed from an initial angular position into the required final angular position in a specified time and with a minimum value of the functional that represents the degree of loading of the construction. An analytical solution to the formulated problem is presented. It is demonstrated that the optimal (in this sense) control of the spacecraft reorientation can be determined in the class of a regular precession executed by the spacecraft. The instant when braking begins is determined based on the principles of terminal control using the actual kinematical parameters of the spacecraft motion, which substantially increases the accuracy of transferring the spacecraft to a specified position. Data of mathematical modeling are also presented that confirm the efficiency of the described method of controlling the spacecraft's three-dimensional turn.  相似文献   

13.
The problem of optimal turn of a spacecraft from an arbitrary initial position to a final specified angular position in a minimum time is considered and solved. A case is investigated, when the constraint on spacecraft’s angular momentum during the turn is essential. Based on the quaternion method a solution to the posed problem has been found, and an optimal control program is constructed taking the constraints on controlling moment into account. The optimal control is found in the class of regular motions. A condition (calculation expression) is presented for determining the moment to begin braking with the use of measurements of current motion parameters, which considerably improves the accuracy of putting the spacecraft into a preset position. For a dynamically symmetrical spacecraft the solution to the problem of optimal control by the spacecraft spatial turn is presented in analytical form (expressions in elementary functions). An example of mathematical modeling of the spacecraft motion dynamics under optimal control over reorientation is given.  相似文献   

14.
最优双冲量交会问题的数学建模与数值求解   总被引:1,自引:0,他引:1  
基于普适变量法研究了两个共面轨道的最优双冲量交会问题。具体地,基于求解Lambert问题的普适变量法,在将给定时间段划分初始飘移阶段、轨 道转移阶段与终端停泊阶段的前提下,对两圆轨道及两拱线相同的椭圆轨道的最优双冲量交 会问题分别进行了优化数学建模,并利用数学软件Lingo进行了数值求解。数值结果表明,划分给定时间段可以得到更优解。
  相似文献   

15.
A general periodicity condition is presented by analyzing the relative motion between two spacecraft performing formation flight in Keplerian elliptic orbits. The Tschauner–Hempel equation is used to describe the relative motion, and the general periodicity condition is derived through a state transition matrix with a true anomaly as a free variable. The general periodicity condition is also derived by using the energy matching condition, and the resulting periodic conditions by two approaches are compared to each other. Moreover, the zero offset condition is presented to locate the leader spacecraft at the center of the formation geometry. Then, the periodic relative motion in the elliptic reference orbit is expressed using the periodicity condition and the zero offset condition. Numerical simulations demonstrate the periodic relative motion in the elliptic reference orbit, and the results show that the general periodicity condition guarantees the bounded periodic relative motion in arbitrary elliptic orbits, and the zero offset condition makes the formation center coincide with the leader spacecraft.  相似文献   

16.
the paper considers the flyby problem related to large space debris (LSD) objects at low earth orbits. The data on the overall dimensions of known last and upper stages of launch vehicles makes it possible to single out five compact groups of such objects from the NORAD catalog in the 500–2000 km altitude interval. The orbits of objects of each group have approximately the same inclinations. The features of the mutual distribution of the orbital planes of LSD objects in the group are shown in a portrait of the evolution of deviations of the right ascension of ascending nodes (RAAN). In the case of the first three groups (inclinations of 71°, 74°, and 81°), the straight lines of relative RAAN deviations of object orbits barely intersect each other. The fourth (83°) and fifth (97°–100°) LSD groups include a considerable number of objects whose orbits are described by straight lines (diagonals), which intersect other lines many times. The use of diagonals makes it possible to significantly reduce the temporal and total characteristic velocity expenditures required for object flybys, but it complicates determination of the flyby sequence. Diagonal solutions can be obtained using elements of graph theory. A solution to the flyby problem is presented for the case of group 5, formed of LSD objects at sun-synchronous orbits.  相似文献   

17.
Regularization problems in celestial mechanics and astrodynamics are considered. The fundamental regular quaternion models of celestial mechanics and astrodynamics are presented. It is shown that the efficiency of analytical investigation and numerical solution of boundary problems of optimal trajectory motion control of spacecraft may be increased using quaternion astrodynamics models. The regularization problem of celestial mechanics and astrodynamics that implies eliminating the feature, which arises in the equations of the two-body problem in case of impact of the second body with the central body, is considered in the first section of the paper. The quaternion method for regularizing the equations of the perturbed spatial two-body problem suggested by the author is presented; the method is compared with Kustaanheimo-Stiefel (KS) regularization. Demonstrative geometric and kinematic interpretations of regularizing transformations are provided. Regular quaternion equations for the two-body problem, which generalize the regular Kustaanheimo-Stiefel equations, as well as regular equations in quaternion osculating elements and quaternion regular equations for perturbed central motion of a material point, are considered. The papers on quaternion regularization in celestial mechanics and astrodynamics are briefly analyzed.  相似文献   

18.
圆轨道欠驱动航天器编队重构脉冲控制   总被引:1,自引:1,他引:0       下载免费PDF全文
针对圆轨道径向或迹向欠驱动航天器编队重构控制问题,提出了欠驱动脉冲控制方法。首先,基于圆轨道欠驱动航天器相对运动动力学模型,分析了两类欠驱动条件下的系统可控性和重构可行性。然后,解析推导了两类欠驱动条件下实现重构所需的最少脉冲次数以及对应的速度增量消耗。最后,设计数值仿真算例,验证了本文提出的欠驱动脉冲控制方法的正确性。仿真结果表明:径向和迹向欠驱动条件下均可实现圆轨道编队重构。与全驱动控制方法相比,欠驱动控制方法可有效避免由推力器故障引起的重构任务失效,故而提高了控制系统的灵活性与可靠性。  相似文献   

19.
We consider the issues of modeling the moments of aerodynamic forces acting upon a satellite with gravitational system of stabilization. It is assumed that satellite orbits are almost circular with heights in the range 550–750 km. Simplified analytical expressions are suggested for the aerodynamic moment in the case when a satellite moves in the regime of gravitational orientation. Accuracy of the obtained expressions is estimated to be compared with that of expressions derived under the assumption of constant coefficient of frontal resistance. An analysis is made of short-periodic variations of the atmosphere density occurring due to orbital motion of a satellite. It is demonstrated that these variations can result in a substantial change of the aerodynamic moment, and their approximation by a truncated Fourier series is suggested. Estimates of the accuracy of the suggested approximation are given.  相似文献   

20.
《Acta Astronautica》1986,13(8):473-479
One solution to the restricted three-body problem is that of three-dimensional, periodic halo orbits. These orbits emanate from the three collinear libration points and exist at all possible mass ratios of the primaries, with infinite possible trajectories. Their existence motivated this study of the effect of an additional gravitational influence on the motion. The approach is to seek a solution in the restricted four-body problem using halo solutions as an initial approximation. The method first solves for periodic, coplanar motion of the three primaries under their mutual gravitational attractions and represents them as trigonometric series. Then, under the modified gravity force model, a three-dimensional solution is obtained in the problem of four bodies, periodic with respect to the synodic system of the three primaries. The additional primary remains relatively far removed and acts as a perturbing influence on the original motion. Some shape and stability characteristics are presented for three such solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号