首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The features of the excitation of spatially localized long-period (10–15 min) irregular pulsations with a maximum amplitude of ~200 nT at a geomagnetic latitude of 66° in the morning sector 5 MLT are considered. Fluctuations were recorded against the background of substorm disturbances (maximum AE ~ 1278 nT). Antiphase variations of plasma density and magnetic field accompanied by vortex disturbances of the magnetic field both in the magnetosphere and the ionosphere have been recorded in the magnetosphere in this sector. Compression fluctuations corresponding to a slow magnetosonic wave have been recorded in the interplanetary medium in the analyzed period. It is assumed that pulsations have been excited in the localization of the cloud of injected particles in the plasma sheet by compression fluctuations caused by variations of the dynamic pressure of solar wind.  相似文献   

2.
We have analyzed a short-term (3–4 s) burst of geomagnetic pulsations in the frequency range of 0.2–5 Hz observed during the commencement of a magnetic storm on March 17, 2015. The burst was observed by a network of observatories in different sectors of local time and at different latitudes. The spectra of pulsations involves a resonant structure with a global maximum at a frequency of 2.78 ± 0.38 Hz, despite some differences at different observatories. There is a delay by almost 4 s in the maximum of the train amplitude at nightside observatories with respect to a dayside observatory. The burst of pulsations has been shown to be on the front of the magnetic disturbance associated with sudden storm commencement (SSC) and, therefore, can be considered as a precursor. The observations of particle fluxes by low-orbit satellites have shown that the SSC is accompanied by a dramatic increase in the fluxes of precipitating protons and electrons. We have suggested that the mechanism of oscillation generation may be the ion–cyclotron instability of ring current protons and the resonant structure of pulsations may be associated with the ionospheric Alfvén resonator.  相似文献   

3.
We present the results of studying the magnetospheres’s response to sharp changes of the solar wind flow (pressure) based on observations of variations of the ions flux of the solar wind onboard the Inreball-1 satellite and of geomagnetic pulsations (the data of two mid-latitude observatories and one auroral observatory are used). It is demonstrated that, when changes of flow runs into the magnetosphere, in some cases short (duration ~ < 5 min) bursts of geomagnetic pulsations are excited in the frequency range Δf~ 0.2–5 Hz. The bursts of two types are observed: noise bursts without frequency changes and wide-band ones with changing frequency during the burst. A comparison is made of various properties of these bursts generated by pressure changes at constant velocity of the solar wind and by pressure changes on the fronts of interplanetary shock waves at different directions of the vertical component of the interplanetary magnetic field.  相似文献   

4.
Using a single event as an example, we make an analysis of the time development of a substorm and estimate its influence on the motion of the low-latitude boundary of the magnetosphere. To this end, we compare the data on plasma and magnetic field obtained by five spacecraft (WIND, INTERBALL-1, GEOTAIL, GOES-8, and GOES-9) with measurements made by ground-based stations. It is shown that the release of energy of the geomagnetic tail begins from a disruption of the current sheet near the Earth. The high-speed plasma stream that transfers a magnetic flux to the Earth and can have an effect on the magnetic field configuration near the Earth is detected later. Almost simultaneously with a substorm onset a series of magnetopause crossings has been detected by the INTERBALL-1 satellite on the evening side of the low-latitude magnetosphere. In this paper we consider some of possible causes of this motion of the magnetosphere boundary, including variations of parameters of the solar wind, Kelvin-Helmholtz instability, and substorm processes. It is shown that fast motions of the magnetopause are detected almost simultaneously with field variations in the near magnetotail of the Earth and geomagnetic pulsations Pi2 on ground-based stations. A sufficiently high degree of correlation (K = 0.67) between the amplitude of Pi2 pulsations and the amplitude of magnetic field variations near the magnetopause is probably indicative of the connection of short-term motions of the magnetosphere boundary with the tail current disruption and the process of formation of a substorm current wedge.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 4, 2005, pp. 248–259.Original Russian Text Copyright © 2005 by Nikolaeva, Parkhomov, Borodkova, Klimov, Nozdrachev, Romanov, Yermolaev.  相似文献   

5.
During the period October 29–31, 2003, geosynchronous magnetopause crossings (GMC) have been identified based on the magnetic data of the GOES series spacecraft and plasma data of the LANL series spacecraft. It is shown that most of the time the size of the dayside magnetosphere was highly decreased under the effect of very high pressure associated with high velocities and densities of the solar wind plasma, as well as high negative values of the Bz component of the interplanetary magnetic field (IMF). For tens of hours the subsolar magnetopause was deep inside the geosynchronous orbit. During the main phase and at the maximum of the strong geomagnetic storms that occurred in the period under consideration, the dayside magnetosphere was characterized by a strong dawn-dusk asymmetry, so that its size in the postnoon sector considerably exceeded the size in the pre-noon sector. The geomagnetic disturbances in the morning on October 30 and 31, 2003 were accompanied by global magnetospheric pulsations with periods of 5–10 min and high amplitude (up to 0.8 RE).Translated from Kosmicheskie Issledovaniya, Vol. 42, No. 6, 2004, pp. 574–584.Original Russian Text Copyright © 2004 by Dmitriev, Suvorova.  相似文献   

6.
The effect of Alfven-type oscillations in a coronal magnetic arch on modulation of the gyrosynchrotron radiation and development of the ballooning instability in the arch is considered. On the basis of the energy method and the method of normal modes, the expressions are obtained for increments of ballooning instability at its swinging by natural oscillations of the arch. The conclusion is drawn that bending oscillations, which do not actually compress the plasma and, therefore, represent the Alfven-type modes, unlike the radial oscillations, are capable, under solar corona conditions, to effectively swing ballooning instability and, as a consequence, play a part of a trigger for solar flares. The ballooning instability of coronal arches is shown to be capable of causing formation of helmet-shaped structures in the lower solar corona. On the basis of calculations of the intensity modulation depth and the degree of circular polarization of non-thermal gyrosynchrotron radiation, under the assumption of excited Alfven oscillations of a coronal arch, the conclusion is drawn, that microwave observations at a frequency of > 10 GHz can be used for studying the conditions of excitation and propagation of Alfven modes in flare loops. The consequences of obtained results are discussed using the flare on April 15, 2002 as an example.  相似文献   

7.
Fedorov  A.  Budnik  E. 《Cosmic Research》2000,38(6):540-546
Localization of the reconnection region at the dayside magnetopause is among the unsolved problems of magnetospheric physics. There are two alternative models, one of which predicts the reconnection at the equatorial magnetopause, and the other predicts the reconnection in the region where the magnetic field of the solar wind flowing around the magnetosphere is antiparallel to the geomagnetic field. The statistical analysis carried out for 53 INTERBALL-1crossings of the high-latitude magnetopause in a special coordinate frame invariant with respect to the interplanetary conditions shows that the model of a reconnection in antiparallel fields agrees well with the experimental data.  相似文献   

8.
We consider in detail the intense Pc5 pulsations of the magnetic field, riometric absorption, and electron fluxes occurred on the recovery phase of the strong magnetic storm on November 21, 2003. The global structure of these disturbances is studied using the world network of magnetometers and riometers supplemented by the data of particle detectors onboard the LANL geosynchronous satellites. The local spatial structure is investigated according to data of the regional network of Finnish vertical riometers and of stations of the IMAGE magnetic network. Though a certain similarity is observed in the frequency composition and time evolution of the variations of magnetic field and riometric absorption, the local spatial structure of these oscillations turns out to be different. It is suggested that these variations can be manifestations of oscillatory properties of two weakly connected systems: the magnetospheric MHD waveguide/resonator and the system cyclotron noise + electrons. The recorded Pc5 oscillations are, presumably, a result of excitation of the magnetospheric waveguide on the morning and evening flanks of the magnetosphere. At high velocities of the solar wind this waveguide can appear in a metastable state. Not only jumps in the solar wind density, but injection of electrons into the magnetosphere as well, can serve as a trigger for the waveguide excitation.  相似文献   

9.
We have considered the possible causes of discrepancies between the predicted and observed at 1 AU parameters of the recurrent solar wind (SW) streams in the maximum of the 24th solar cycle. These discrepancies have been observed in both the SW velocity profile and the SW stream arrival time, as well as in the absence of the expected high-speed SW stream. The degree of discrepancy depends on the model used for the SW prediction; however, in some cases, different prediction methods provide a similar discrepancy with the observed SW parameters at 1 AU. For several cases, we show that the probable cause of the discrepancies can be a deflection of the high-speed SW stream from the radial direction due to the interaction with the transient SW streams at certain configuration of the magnetic fields of high-speed and transient SW sources in the solar corona.  相似文献   

10.
Pulsation and vibration process in high speed centrifugal pumps and feed lines were investigated. Linear and quadratic relations between pulsation parameters and main factors were obtained. The investigation of turbopump low frequency oscillations showed that the intensity of pulsations is proportional to the pump specific linear size. Linear mathematic models with lumped parameters fairly well demonstrate the vibration influence on low frequency flow pressure vibrations in pumps and feed lines. It is shown that, in some conditions, the pressure oscillation amplitude distribution by the vibrating feed lines length may be characterized by the presence of a node in an intermediate section. A one-dimensional mathematic model based on wave equations proved to be suitable for calculations of vibration and pulsation parameters within a wide frequency range.  相似文献   

11.
The results of studying the interaction of two types of the solar wind (magnetic clouds and solar wind of extremely low density) with the Earth's magnetosphere are discussed. This study is based of the INTERBALL space project measurements and on the other ground-based and space observations. For moderate variations of the solar wind and interplanetary magnetic field (IMF) parameters, the response of the magnetosphere is similar to its response to similar changes in the absence of magnetic clouds and depends on a previous history of IMF variations. Extremely large density variations on the interplanetary shocks, and on leading and trailing edges of the clouds result in a strong deformation of the magnetosphere, in large-scale motion of the geomagnetic tail, and in the development of magnetic substorms and storms. The important consequences of these processes are: (1) the observation of regions of the magnetosphere and its boundaries at great distances from the average location; (2) density and temperature variations in the outer regions of the magnetosphere; (3) multiple crossings of geomagnetic tail boundaries by a satellite; and (4) bursty fluxes of electrons and ions in the magnetotail, auroral region, and the polar cap. Several polar activations and substorms can develop during a single magnetic cloud arrival; a greater number of these events are accompanied, as a rule, by the development of a stronger magnetic storm. A gradual, but very strong, decrease of the solar wind density on May 10–12, 1999, did not cause noticeable change of geomagnetic indices, though it resulted in considerable expansion of the magnetosphere.  相似文献   

12.
Modulation of the VLF emission and riometric absorption by Pc5 geomagnetic pulsations is studied in the period of strong geomagnetic disturbances on October 30–31, 2003. Some conclusions about the regime of pitch-angular diffusion into the loss cone are made. The better coincidence of VLF emission modulation with geomagnetic pulsations in other longitude sectors is explained by the global character of excitation of the pulsations and by damping of their amplitudes at the meridian of observation of the VLF emission, which is associated with intensification of auroral electrojets.Translated from Kosmicheskie Issledovaniya, Vol. 42, No. 6, 2004, pp. 632–639.Original Russian Text Copyright © 2004 by Solovyev, Mullayarov, Baishev, Barkova, Samsonov.  相似文献   

13.
Some issues concerning the influence of multi-ion composition of plasma on the spectrum of ultralow frequency (ULF) oscillations in the magnetosphere are analyzed. Main emphasis is made on the effects that are perceptible by analyzing the results of observations of ULF oscillations. The resonator confining ion cyclotron waves in the equatorial zone high above the Earth is considered, as well as the near-equatorial waveguide existing under the plasmasphere arch and canalizing magnetosonic waves in the azimuth direction. It is shown that the very existence of the ion-cyclotron resonator would be impossible, if only one species of ions were contained in plasma. It is emphasized that the problem of excitation of magnetosonic waves with harmonics of the gyrofrequency of O+ needs further investigation. The effect of heavy ions on the spectrum of Alfvén oscillations of the magnetosphere is considered. Some arguments are presented giving evidence that existence of alpha-particles in the solar wind leads to an asymmetry of the spectrum of magnetosonic oscillations in front of the Earth’s bow shock. Anomalously large asymmetry is expected at immersion of the Earth into the “plasmasphere” of the flare-associated stream of solar plasma. The general conclusion is made that even a small admixture of heavy ions can have a substantial effect on the spectrum of ULF oscillations.  相似文献   

14.
The large and sharp changes of solar wind dynamic pressure, found from the INTERBALL-1 satellite and WIND spacecraft data, are compared with simultaneous magnetic field disturbances in the magnetosphere measured by geosynchronous GOES-8, GOES-9, and GOES-10 satellites. For this purpose, about 200 events in the solar wind, associated with sharp changes of the dynamic pressure, were selected from the INTERBALL-1 satellite data obtained during 1996–1999. The large and sharp changes of the solar wind dynamic pressure were shown to result in rapid variations of the magnetic field strength in the outer magnetosphere, the increase (drop) of the solar wind dynamic pressure always lead to an increase (drop) of the geosynchronous magnetic field magnitude. The value of the geomagnetic field variation strongly depends on the local time of the observation point, reaching a maximum value near the noon meridian. It is shown that the direction of the B z component of the interplanetary magnetic field has virtually no effect on the geomagnetic field variation because of a sharp jump of pressure. The time shift between an event in the solar wind and its response in the magnetosphere at a geosynchronous orbit essentially depends on the inclination of the front of a solar wind disturbance to the Sun-Earth line.  相似文献   

15.
The relationship between proton aurora and geomagnetic pulsations Pc1, which are an indicator of development of ion-cyclotron instability in the equatorial magnetosphere, are studied on the basis of the observations of proton aurora from the IMAGE satellite, observations of particle fluxes onboard the low-orbiting NOAA satellites, and geomagnetic pulsation observations at the Lovozero observatory. A conclusion is drawn that the subauroral spots in the proton emission projected into the magnetosphere near the plasmapause are two-dimensional images at the ionospheric “screen” of the region of intense scattering of energetic protons into the loss cone at the development of an ion-cyclotron instability.  相似文献   

16.
The results of comparison of the characteristics of sharp boundaries of small-scale and medium-scale solar wind structures in the case of their simultaneous observation on widely spaced spacecraft are described. It is shown that even very sharp boundaries, with duration of several seconds or fractions of a second, retain their amplitude and remain very sharp during solar wind propagation to distances of up to a million kilometers.  相似文献   

17.
Results of the analysis of specific features of solar activity, dynamics of solar cosmic ray fluxes, and state of the interplanetary medium are presented for the period December 5–18, 2006. The data analysis is based on new model concepts on coronal and interplanetary propagation of solar cosmic rays: partial capture into the magnetic field traps and oscillations at reflections from magnetic mirrors. Some new hypotheses about possible relations of the features of the interplanetary medium with processes in the Earth’s magnetosphere are put forward: the influence of the discrete interplanetary medium on processes in the Earth’s magnetosphere does exist always and, in this sense, it is a fundamental phenomenon; the discreteness of the inter-planetary medium can be one of the causes of geomagnetic substorms.  相似文献   

18.
The results of simultaneous analysis of plasma and magnetic field characteristics measured on the INTERBALL/Tail Probe, WIND and Geotail satellites on March 2, 1996, are presented. During these observations the INTERBALL/Tail Probe crossed the low-latitude boundary layer, and the WIND and Geotail satellites measured the solar wind’s and magnetosheath’s parameters, respectively. The plasma and magnetic field characteristics in these regions have been compared. The data of the Corall, Electron, and MIF instruments on the INTERBALL/Tail Probe satellite are analyzed. Fluctuations of the magnetic field components and plasma velocity in the solar wind and magnetosheath, measured onboard the WIND and Geotail satellites, are compared. The causes resulting in appearance of plasma jet flows in the low-latitude boundary layer are analyzed. The amplitude of magnetic field fluctuations in the magnetosheath for a studied magnetosphere boundary crossing is shown to exceed the magnetic field value below the magnetopause near the cusp. The possibility of local violation of pressure balance on the magnetopause is discussed, as well as penetration of magnetosheath plasma into the magnetosphere, as a result of magnetic field and plasma flux fluctuations in the magnetosheath.  相似文献   

19.
A brief review is given of contemporary approaches to solving the problem of medium-term forecast of the velocity of quasi-stationary solar wind (SW) and of the intensity of geomagnetic disturbances caused by it. At the present time, two promising models of calculating the velocity of quasi-stationary SW at the Earth’s orbit are realized. One model is the semi-empirical model of Wang-Sheeley-Arge (WSA) which allows one to calculate the dependence V(t) of SW velocity at the Earth’s orbit using measured values of the photospheric magnetic field. This model is based on calculation of the local divergence f S of magnetic field lines. The second model is semi-empirical model by Eselevich-Fainshtein-Rudenko (EFR). It is based on calculation in a potential approximation of the area of foot points on the solar surface of open magnetic tubes (sources of fast quasistationary SW). The new Bd-technology is used in these calculations, allowing one to calculate instantaneous distributions of the magnetic field above the entire visible surface of the Sun. Using predicted V(t) profiles, one can in EFR model calculate also the intensity of geomagnetic disturbances caused by quasi-stationary SW. This intensity is expressed through the K p index. In this paper the EFR model is discussed in detail. Some examples of epignosis and real forecast of V(t) and K p (t) are discussed. A comparison of the results of applying these two models for the SW velocity forecasting is presented.  相似文献   

20.
We present the results of a cross-correlation analysis made on the basis of Spearman’s rank correlation method. The quantities to correlate are daily values of the fluence of energetic electrons at a geosynchronous orbit, intensities of ground and interplanetary ultra-low-frequency (ULF) oscillations in the Pc5 range, and parameters of the solar wind. The period under analysis is the 23rd cycle of solar activity, 1996–2006. Daily (from 6 h to 18 h of LT) magnetic data at two diametrically opposite observatories of the Intermagnet network are taken as ground-based measurements. The fluxes of electrons with energies higher than 2 MeV were measured by the geosynchronous GOES satellites. The data of magnetometers and plasma instruments installed on ACE and WIND spacecraft were used for analysis of the solar wind parameters and of the oscillations of the interplanetary magnetic field (IMF). Some results elucidating the role played by interplanetary ULF waves in the processes of generation of magneospheric oscillations and acceleration of energetic electrons are obtained. Among them are (i) high and stable correlation of ground ULF oscillations with waves in the solar wind; (ii) closer link of mean daily amplitudes of both interplanetary and ground oscillations with ‘tomorrow’ values of the solar wind velocity than with current values; and (iii) correlation of the intensity of ULF waves in the solar wind, normalized to the IMF magnitude, with fluxes of relativistic electrons in the magnetosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号