首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
基于大涡模拟分析气膜冷却的湍流场   总被引:2,自引:0,他引:2  
刘宁  孙纪宁 《航空动力学报》2010,25(9):1971-1977
用大涡模拟考察了单孔平板气膜冷却的湍流场,气膜孔沿流向倾斜30°,气膜出流的雷诺数为2600,吹风比为0.5.计算结果表明:①气膜孔内的流动分离增加了湍流动能,导致气膜冷却效率的降低,在设计中要尽量避免或减少流动分离;②与射流侧向扩展有关的涡黏性系数在气膜孔两侧存在峰值,而采用各向同性的湍流模型预测气膜冷却时,涡黏性系数的峰值出现在射流与主流的剪切区,因此会高估射流的垂直穿透而低估射流的侧向扩展;③可以用大涡模拟辅助建立各向异性的湍流模型,以便提高湍流模型的预测精度.   相似文献   

2.
全覆盖气膜孔阵列方式对冷却特性的影响   总被引:3,自引:7,他引:3  
运用标准k-ε湍流模型对不同吹风比下正菱形、长菱形和超长菱形三种气膜孔阵列方式的多孔全覆盖气膜冷却的气膜出流流场特性、气膜绝热冷却效率和气膜综合冷却效率进行了数值模拟对比研究.结果表明:气膜孔阵列超长菱形排布是较优的排布方案,在该排布方式下,气膜出流向主流的穿透相对较弱,气膜沿展向的覆盖率也较高,因而气膜绝热冷却效率相对最高;气膜孔排布方式对气膜综合冷却效率的影响规律与气膜绝热冷却效率的基本一致,超长菱形排布仍然是较优的排布方案.   相似文献   

3.
收缩-扩张形气膜孔提高气膜冷却效率的机理研究   总被引:6,自引:5,他引:6  
为了揭示收缩-扩张形孔提高气膜冷却效率的机理,选择了两种典型的气膜孔:圆柱形孔和扇形孔,进行了数值模拟对比研究.湍流模型选取Realizable k-ε模型,壁面函数采用增强壁面函数.结果表明:圆柱形孔射流法向动量很大很集中,生成了较强的耦合涡,冷却效率最低;扇形孔减弱了射流的法向动量,并产生了一定的展向速度,冷却效率得以提高;收缩-扩张形孔减小了射流的流向厚度,增大了射流的展向宽度,且产生了更大的展向速度,扩大了射流的覆盖区域,形成了与圆形孔及扇形孔射流相比作用相反的耦合涡,使气膜更好地贴附于壁面,气膜冷却效率高于其它两种孔形的效率;相对于圆柱形孔和扇形孔,收缩-扩张形孔的平均气膜冷却效率,在吹风比为0.5时,分别提高了约110%和15%,在吹风比为2时,分别提高了约560%和60%.   相似文献   

4.
冲击距与气膜孔方位角对旋流气膜冷却性能影响   总被引:1,自引:1,他引:1       下载免费PDF全文
刘友宏  任浩亮 《推进技术》2016,37(7):1271-1279
为了获得冲击距Hi与气膜孔方位角α对旋流气膜冷却性能的影响规律,以六边形供气腔圆形气膜孔平板气膜冷却结构为研究对象,对五种冲击距参数(0.74D,1.14D,1.54D,1.94D,2.34D)(D为气膜孔直径)和五种气膜孔方位角参数(0°,10°,15°,20°,25°)进行了三维数值计算研究,得到了绝热壁面气膜冷却效率、展向平均气膜冷却效率、流场空间无量纲浓度分布等随冲击距与气膜孔方位角的变化规律,分析了肾形涡对旋流气膜冷却性能的影响机理。结果表明:冲击距对绝热壁面气膜冷却效率展向分布规律影响不大,而方位角增加能够明显提高绝热壁面气膜冷却效率及展向气膜覆盖面积,方位角0°模型展向气膜冷却效率最大值为0.42,方位角25°模型的最大值为0.48,相比前者增加14.3%;绝热壁面同一流向位置的展向平均气膜冷却效率随冲击距的增加而增大,随方位角的增加而增大,Hi=2.34D时的展向平均气膜冷却效率最佳,α=20°时的展向平均气膜冷却效率曲线最佳。方位角的增加能够明显破坏流场中存在的肾形涡结构。  相似文献   

5.
梯形突片气膜冷却特性的实验   总被引:1,自引:0,他引:1  
为了研究突片对气膜冷却的影响规律,设计了3种不同堵塞比的梯形突片,采用红外摄像仪对不同形状突片冷却结构的壁面温度场进行了测试,并对气膜冷却特性的影响规律进行了实验研究.研究结果表明,与无突片的气膜冷却相比,突片的存在大大提高了气膜冷却效率和对流换热系数;冷却效率沿气流方向存在一个最佳吹风比值;对流换热系数在本实验范围内,堵塞比为0.214时气膜冷却对流换热系数最大.   相似文献   

6.
主流湍流度对涡轮导向叶片气膜冷却特性影响的实验   总被引:5,自引:1,他引:5  
采用基于窄带热色液晶的瞬态全表面传热测量技术,研究了主流湍流度对涡轮导向叶片吸力面圆柱形孔排气膜冷却特性的影响规律.结果表明:在实验工况范围内,主流湍流度从0.59%提高至6.85%,可以在气膜出流的上游区域促进气膜贴向壁面并扩大展向覆盖面积,从而改善气膜覆盖效果,但是在主流湍流度较大的工况下,气膜覆盖效果迅速变差;在气膜出流的下游区域,主流湍流度的提高使得气膜冷却效率逐渐降低;主流湍流度的增大,增强了无气膜冷却光滑叶片表面的对流换热;在气膜冷却条件下,气膜出流对叶片表面对流换热的增强效果随着主流湍流度的增大呈现出明显的区域性特点:表面传热系数比在上游区域是先增强后减弱;中游区域是逐渐减弱;下游区域则是逐渐增强.  相似文献   

7.
各向异性复合材料平板气膜冷却特性实验和数值研究   总被引:2,自引:0,他引:2  
针对不同编织方式形成的复合材料平板气膜冷却开展了实验研究,利用红外热像仪测量了热侧壁面的温度场分布,分析了平板导热系数、吹风比、主流温度等参数对综合冷却效率的影响。在实验验证的基础上,进一步对单向增韧特点的复合材料进行数值模拟,分析了X、Y、Z三个方向导热系数对单孔气膜冷却壁面温度场分布和综合冷却效率的影响。结果表明:随着吹风比的升高,气膜综合冷却效率升高;随着主流温度的升高,气膜冷却效率降低;25D编织复合材料冷却效率最高,3D编织复合材料冷却效率最低。各向异性复合材料内部的温度梯度、传热量都与材料的导热系数特征有关,X方向和Z方向的导热系数增大,沿程综合冷却效率升高;而Y方向导热系数的增大对气膜冷却效率几乎没有影响。   相似文献   

8.
弯曲多孔壁不同倾斜角气膜孔整体气膜冷却效率研究   总被引:5,自引:4,他引:1  
对弯曲多孔壁气膜冷却整体冷却效率进行了深入研究.弯曲多孔壁由等曲率凹壁面多孔壁实验板来模拟, 实验研究了相同排列方式下2种不同小孔倾角方案整体气膜冷却效率, 分析了弯曲通道曲率对冷却效率的影响, 得到了沿流程的展向平均冷却效率及x/d=21.8和x/d=65.3处展向冷却效率分布.研究结果表明, 吹风比是影响凹壁面小孔气膜冷却效率的关键因素;随着吹风比的增大, 2种孔倾角冷却效率的差异变小;主流通道中气体的流动规律对冷却效率有较大影响.   相似文献   

9.
本文选取Realizable k-ε湍流模型和增强壁面函数,采用数值模拟研究了两种出口-入口面积比不同的收缩扩张形孔的气膜冷却机理.结果表明:出口-入口面积比AR变化对收缩扩张形孔气膜冷却的流场、温度场结构特点没有本质的影响,因此对冷却效率和换热系数的分布规律都没有明显影响;但AR变化对收缩扩张形孔的冷却效率和换热系数...  相似文献   

10.
狭小空间内气膜孔流量系数的数值模拟   总被引:1,自引:1,他引:0  
针对多层层板冷却、双层壁冷却等冷却技术,利用数值模拟分析了这些冷却结构形成的狭小冷却通道中,气膜孔附近的流动特性,重点研究了气膜孔流量系数Cd随吹风比M(0.5~2.0)、气膜孔雷诺数Re(5000~10000)以及冷却通道高度H和气膜孔直径D之比H/D(0.33~1.0)等参数的变化规律.数值计算中湍流模型为Realizable k-ε模型,近壁处采用非平衡壁面函数,利用SIMPLE算法和二阶迎风格式进行离散求解.计算结果表明:气膜孔流量系数随吹风比的增大而增大,在吹风比M小于1时,影响尤为明显.研究中同时发现在相同吹风比的条件下,Cd随着气膜孔雷诺数的增大而减小,但变化的幅度不大;在相同的气膜孔雷诺数下,Cd随着H/D的减小而降低,特别是当H/D小于0.75时,随着流体在进入气膜孔前逐步受到限制,Cd随着H/D的减小而快速降低.   相似文献   

11.
用8个常用的湍流模型对Sajben扩压器中跨声速流动进行了数值模拟,评估了Spalart-Allmaras, 标准k-ε, RNG (re-normalization group) k-ε,realizable k-ε,标准k-ω,SST(shear stress transport) k-ω,v2-f,Reynolds stress共8个湍流模型对激波/湍流边界层相互作用的模拟预测能力.通过与实验数据比较发现:SST k-ω模型和v2-f模型比其他模型模拟的更准确,其中SST k-ω模型比v2-f更能准确地预测壁面压力,然而对于分离点、再附点以及分离区长度v2-f比SST k-ω预测得更准确.   相似文献   

12.
离散气膜孔下游边界层的实验研究   总被引:1,自引:0,他引:1  
“X”型热线测量了离散气膜孔下游边界层内的湍流量,将热线探头绕轴转三个角方位以感受三维湍流场信息。结果表明,边界层内湍动能分布呈反“S”形,吹风比和孔排数对参数分布有重要影响,这种影响在很长距离上不消失,所以,常用的k-ε模型不经修正不能正确预计这类边界层的发展。  相似文献   

13.
分析了广泛存在于湍流运动中的能量逆转现象,揭示了其产生的原因,提出了湍流的色散性质.在此基础上,修改了Boussinesq假设,建立了包含色散效应的新的雷诺应力封闭式和湍流色散系数,给出与不同模型相结合时,湍流色散系数所具有的不同形式,并阐述了湍流运动中能量的传递方向及条件.采用不可压缩平板边界层流动和平面后台阶流动验证了其可信性和优越性.平板摩擦阻力系数及边界层速度型与实验结果吻合良好,平面后台阶流动的流向再附长度、台阶边压力系数及湍流强度等参数均比标准k-ε模型更接近实验结果.结果表明:色散项的加入可以在不显著增加计算量的同时显著改善预测精度,模型具有一定的工程应用价值.   相似文献   

14.
基于可变时间间隔平均方法,提出了一种不可压缩湍流多尺度模型及平均流动方程.与传统的单尺度湍流模型不同,该模型在建立的过程中,保留了湍流的多尺度特性,结合平均流动方程,可以更好地预测湍流流场特征.通过模拟平面后台阶流动和不对称平板扩压器流动,并将预测结果与标准k-ε模型的预测结果对比,初步验证了其可信性及优越性.结果表明:计算所得的平面后台阶流动的流向再附长度与台阶边压力系数比比标准k-ε模型提高精度约20%;平板扩压器流动的回流区位置误差约为7%、倾斜壁面摩擦因数误差约为5%,而标准k-ε模型未能预测出分离现象.可以看出该模型适用于典型的分离流动,在湍流流场的预测中表现优异,具有一定的工程应用价值   相似文献   

15.
高超声复杂流动中湍流模式应用的评估   总被引:2,自引:0,他引:2  
本文选择几个高超声速基准流动:二维可压缩拐角、锥柱裙组合体绕流、斜激波与湍流边界层干扰,采用几个常见的湍流模式,BL模式,CHκ-ε模式,κ-ε模式,SST模式,CMOTTκ-ε模式,SHIHκ-ε模式,通过将数值计算结果和实验结果进行比较,对有关的湍流模式地 评估,得到一些有意义的结论。  相似文献   

16.
双出口孔射流气膜冷却换热特性数值模拟   总被引:1,自引:0,他引:1  
为了优化气膜冷却结构,通过数值模拟研究了一种新型气膜孔(由两个圆柱孔组成的双出口孔)的气膜冷却换热特性。利用Fluent软件对N-S方程进行求解,湍流模型采用两方程realizable k-ε模型和增强壁面函数处理。重点研究了吹风比对气膜冷却换热系数、换热系数比和热流比的影响。结果表明,换热系数随吹风比增大而增大,随x/d增大而减小,气膜孔附近尤其明显。吹风比0.5和1.0时,换热系数比随x/d增大而减小;吹风比1.5和2.0时,换热系数比随x/d增大先减小后增大。在研究的吹风比范围,双出口孔射流气膜冷却起到了削减从燃气传入叶片热流的作用。吹风比从0.5增大到1.0,热流比减小;吹风比从1.0增大到2.0,热流比增大。热流比随x/d增大而增大,气膜冷却的冷却效果减小。  相似文献   

17.
在对射流冷却平板模型和射流冷却凹板模型数值模拟的基础上,设计了射流冲击冷却式蒸汽冷却叶片,并对其进行了热耦合数值模拟.通过改变平板和凹板的进口雷诺数,射流孔与靶板间距和凹板曲率,对靶板的冷却传热进行了对比研究,得到传热量与各个参数的变化规律.然后根据上面得到的变化规律设计出射流冲击冷却式蒸汽冷却叶片,应用ANSYS CFX 10.0数值程序,对冲击冷却的流动和传热过程进行了三维热耦合数值模拟,得到叶片表面温度和对流换热系数分布.   相似文献   

18.
通道深宽比对液体火箭发动机推力室再生冷却的影响   总被引:2,自引:1,他引:1  
应用湍流模型对液体推进剂火箭发动机再生冷却推力室通道的流动与传热进行了三维数值模拟, 冷却工质为氢气, 其密度、导热系数、动力粘度随着温度和压力而变化, 冷却剂比热容及金属固体物性随着温度而变化.计算采用标准k-ε两方程湍流模型及气-固耦合算法.保持再生冷却通道个数及冷却工质进口流量不变, 通过改变通道肋壁厚度来改变冷却通道深宽比, 研究不同深宽比对推力室壁面再生冷却效果的影响规律.计算结果表明:增加通道深宽比对推力室壁面能够起到强化传热的作用, 但同时也增加了冷却通道的进出口压差.这是由于冷却工质流速的增高, 从而提高了推力室传热系数.随着深宽比不断增加, 推力室再生冷却效果趋于饱和, 而冷却工质进出口压降则不断上升.   相似文献   

19.
双出口气膜孔冷却效率数值模拟   总被引:5,自引:3,他引:2  
为了优化气膜冷却结构,通过数值模拟研究了一种新型气膜孔(由两个圆柱孔组成的双出口孔)的气膜冷却特性.利用Fluent软件对Navier-Stokes方程进行求解,湍流模型采用两方程Realizablek-ε模型和增强壁面函数处理.圆柱孔射流的冷却效率计算结果和实验数据吻合较好.双出口孔射流冷却效率计算结果表明,双出口孔射流有效地增加了冷气的径向覆盖范围,在吹风比为0.5时,次孔射流起到了减弱主孔出口对旋涡的作用;在吹风比为1.0和2.0时,次孔射流使主孔出口处的对旋涡消失.最高冷却效率对应的吹风比为1.0.双出口孔射流在提高冷却效率的同时,其加工难度较扩张形孔明显降低.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号