首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The development of hybrid inorganic/organic thin-film solar cells on flexible, lightweight, space-qualified, durable substrates provides an attractive solution for space power generation with high mass specific power (W/kg). The high-volume, low-cost fabrication potential of organic cells will allow for square miles of solar cell production at one-tenth the cost of conventional inorganic materials. Plastic solar cells take a minimum of storage space and can be inflated or unrolled for deployment. We explore a cross-section of NASA in-house and sponsored research efforts that aim to provide new hybrid technologies that include both inorganic and polymer materials as active and substrate materials. For NASA applications, any solar cell or array technology must not only meet weight and AMO efficiency goals, but also must be durable enough to survive launch and space environments. Also, balance of system technologies must be developed to take advantage of ultra-lightweight solar arrays in power generation systems.  相似文献   

2.
At IECEC 2001, this team presented a paper on the new stretched lens array (SLA), including its evolution from the successful SCARLET array on the NASA/JPL Deep Space 1 spacecraft. Since that conference, the SLA team has made significant advances in SLA technology, including component-level improvements, array-level optimization, space environment exposure testing, and prototype hardware fabrication and evaluation. This paper describes the evolved version of the SLA, highlighting recent improvements in the lens, solar cell, photovoltaic receiver, rigid panel structure, and complete solar array wing. In addition to excellent durability in the space environment, the near-term SLA will provide outstanding wing-level performance parameters: 180 W/kg specific power; 300 W/m/sup 2/ power density; 300 V operational voltage; 85% savings in cell area (cm/sup 2//W) and cell-related cost ($/W) compared to planar arrays; 9 kW/m/sup 3/ stowed power at launch.  相似文献   

3.
The photovoltaic (PV) generator exhibits a nonlinear i-v characteristic and its maximum power (MP) point varies with solar insolation. In this paper, a V2-based MP point tracking (MPPT) scheme is developed using a buck-boost transformation topology. Although several buck-boost transformation topologies are available we have considered here a coupled inductor SEPIC converter for experimentation. To achieve almost ripple-free array current we have used ripple steering phenomena with the help of integrated inductor. This integrated inductor not only reduces the magnetic core requirements but also improves converter performance. Mathematical models are formulated and tracking algorithm is evolved. A combined PV system simulation model is developed in the SIMULINK. For a given solar insolation, the tracking algorithm changes the duty ratio of the converter such that the solar cell array (SCA) voltage equals the voltage corresponding to the MP point. This is done by the tracking algorithm, which mainly computes the power proportional to square of terminal voltage and changes the duty ratio of the converter so that this power is maximum. The proposed algorithm is implemented in real-time with the help of Analog Device ADMC-401 DSP evaluation module. The tracking program is developed to perform experimental investigations using analog-to-digital converter (ADC) interrupt. Using this processor we are able to track the MP within 200 ms. The proposed peak power tracking effectiveness is demonstrated through simulation and experimental results.  相似文献   

4.
Photovoltaic (PV) generators exhibit nonlinear v-i characteristics and maximum power (MP) points that vary with solar insulation. An intermediate converter can therefore increase efficiency by matching the PV system to the load and by operating the solar cell arrays (SCAs) at their maximum power point. An MP point tracking algorithm is developed using only SCA voltage information thus leading to current sensorless tracking control. The inadequacy of a boost converter for array voltage based MP point control is experimentally verified and an improved converter system is proposed. The proposed converter system results in low ripple content, which improves the array performance and hence a lower value of capacitance is sufficient on the solar array side. Simplified mathematical expressions for a PV source are derived. A signal flow graph is employed for modeling the converter system. Current sensorless peak power tracking effectiveness is demonstrated through simulation results. Experimental results are presented to validate the proposed method  相似文献   

5.
This presents our design and development of an 8-channel adaptive beaniforming antenna for new developments in radio technology: the emergence of chip-based components implementing the recently completed IEEE 802.16d-2004 (WiMAX) radio standard [1-4]. WiMAX offers the potential of long-range (up to 50 miles) and high bandwidth (up to 50 Mb~s) radio links. Although the new WiMAX standard offers the potential for using smart, adaptive antennas, this functionality has not been implemented. Our design will serve as a common platform for testing adaptive array algorithms including direction of arrival (DOA) estimation, beamforming, and adaptive tracking, as well as complete wireless communication with a WiMAX Radio. Heavy emphasis will be placed on ease of implementation in a multi-channel / multi-user environment. In the future, we hope to expand this interface to support dynamic radio channel selection via direct interaction with radio hardware or implementation of a cognitive radio system.  相似文献   

6.
A 1,200-W solar AMTEC (alkali metal thermal-to-electric conversion) power system concept was developed and integrated with an advanced global positioning system (GPS) satellite. The critical integration issues for the SAMTEC with the GPS subsystems included: (1) packaging within the Delta II launch vehicle envelope; (2) deployment and start-up operations for the SAMTEC; (3) SAMTEC operation during all mission phases; (4) satellite field of view restrictions with satellite operations; and (5) effect of the SAMTEC requirements on other satellite subsystems. The SAMTEC power system was compared with a conventional planar solar array/battery power system to assess the differences in system weight, size, and operations, Features of the design include the use of an advanced multitube, vapor anode AMTEC cell design with 24% conversion efficiency, and a direct solar insolation receiver design with integral LiF salt canisters for energy storage to generate power during the maximum solar eclipse cycle, The modular generator design consists of an array of multitube AMTEC cells arranged into a parallel/series electrical network with built-in cell redundancy. Our preliminary assessment indicates that the solar generator design is scaleable over a 500 to 2,500-W range. No battery power is required during the operational phase of the GPS mission. SAMTEC specific power levels greater than 5 We/kg and 160 We/m2 are anticipated for a mission duration of 10 to 12 years in orbits with high natural radiation backgrounds  相似文献   

7.
Large apertures are of great benefit to applications that are prime powered limited as is found on aerostat and other airborne platforms. Electronically scanned array antennas are often proposed for these applications. However, increasing the aperture area with conventional array technology is met with prohibitive cost, weight, and prime power increases because of the dense spacing of phase shifters and/or active T/R modules. This discusses the recent development of RF MEMS (Microelectromechanical System) switch technology and the use of these switches in a Radanttrade lens configuration for arrays of approximately 10 m2 at X-band. A proof-of-concept 0.4 m2 MEMS Electronically Steerable Antenna (ESA) containing 25,000 MEMS switches has been successfully designed, fabricated, and tested. The 0.4 m2 MEMS ESA was then integrated with an AN/APG-67 radar system to form the MEMS Demonstration Radar System. The MEMS Demonstration Radar System successfully detected both airborne and ground moving targets during a series of extensive radar demonstrations. This is believed to be the first large scale employment of MEMS switches in a scanning antenna and radar system. The low-cost, lightweight, and low power technology demonstrated can enable weight and power constrained platforms with electronic steering.  相似文献   

8.
Recent successes in the effort to miniaturize spacecraft components using MEMS technology, integrated passive components, and low power electronics have driven the need for very low power, low profile, low mass micro-power sources for micro/nanospacecraft applications. Recent work at JPL has focused upon developing thin film/micro-batteries compatible with temperature sensitive substrates. A process to prepare crystalline LiCoO2 films with RF sputtering and moderate (<700°C) annealing temperature has been developed. Thin film batteries with cathode films prepared with this process have specific capacities approaching the practical limit for LiCoO2, with acceptable rate capabilities and discharge voltage profiles. Solid-state micro-scale batteries have also been fabricated with feature sizes on the order of 50 microns  相似文献   

9.
唐清君  陈厚磊  梁惊涛  蔡京辉 《航空学报》2018,39(Z1):722321-722321
随着空间机械制冷技术的迅速发展,空间脉冲管制冷机在80 K温区整机效率已经优于1 W/18 W(制冷量/输入电功)。针对中国航天未来微小卫星的发展,中国科学院理化技术研究所开展了空间微小脉冲管制冷机的研究,并获得突破性的进展。理化技术研究所研制的宇航级微型脉冲管制冷机,80 K温区制冷量与重量比已经大于1.5 W/1 kg,制冷效率达到1 W/22.5 W(制冷量/输入电功),在轨设计寿命超过30 000 h,可以与中波红外320×256以下面阵探测器直接耦合。系统介绍了中国科学院理化技术研究所微型脉冲管制冷机的研发过程,并给出了最新的研发结果。该制冷机除了可以实现给中波红外探测器制冷以外,还可以作为辅助热控手段,对220 K以下温区的载荷热控、载荷在轨气体多余污染物吸附等应用提供帮助。  相似文献   

10.
A stability analysis for a maximum power point tracking (MPPT) scheme based on extremum-seeking control is developed for a photovoltaic (PV) array supplying a dc-to-dc switching converter. The global stability of the extremum-seeking algorithm is demonstrated by means of Lyapunov's approach. Subsequently, the algorithm is applied to an MPPT system based on the "perturb and observe" method. The steady-state behavior of the PV system with MPPT control is characterized by a stable oscillation around the maximum power point. The tracking algorithm leads the array coordinates to the maximum power point by increasing or decreasing linearly with time the array voltage. Off-line measurements are not required by the control law, which is implemented by means of an analog multiplier, standard operational amplifiers, a flip-flop circuit and a pulsewidth modulator. The effectiveness of the proposed MPPT scheme is demonstrated experimentally under different operating conditions.  相似文献   

11.
This paper presents a single-phase three-wire (1/spl phi/ 3W) grid-connection photovoltaic (PV) power inverter with a of partial active power filter (PAPF) feature, which can not only deal with PV power but filter current harmonics and improve power factor. Once the processed power exceeds the switch ratings, the inverter can reduce its output reactive power and harmonic power, while still supplying the maximum real power generated by the PV arrays. In the derivation of control laws, a limit circle is defined to confine the output power of the inverter. To determine the power that the inverter can process, the instantaneous reactive power of a 1/spl phi/ 3W system is defined and used to calculate reactive power, which can avoid complex detections of phase angle and magnitude of the fundamental component of a nonlinear load current. Simulation results and experimental measurements have verified the proposed algorithm and the feasibility of the inverter.  相似文献   

12.
Power processing units (PPUs) in an electric propulsion system provide many challenging integration issues. The PPU must provide power to the electric thruster while maintaining compatibility with all of the spacecraft power and data systems. Inefficiencies in the power processor produce heat, which must be radiated to the environment in order to ensure reliable operation. Although PPU efficiencies are generally greater than 0.9, heat loads are often substantial. This heat must be rejected by thermal control systems which generally have specific masses of 15-30 kg/kW. PPUs also represent a large fraction of the electric propulsion system dry mass. Simplification or elimination of power processing in a propulsion system would reduce the electric propulsion system specific mass and improve the overall reliability and performance. A direct drive system would eliminate all or some of the power supplies required to operate a thruster by directly connecting the various thruster loads to the solar array. The development of concentrator solar arrays has enabled power bus voltages in excess of 300 V which is high enough for direct drive applications for Hall thrusters such as the Stationary Plasma Thruster (SPT). The option of solar array direct drive for SPTs is explored to provide a comparison between conventional and direct drive system mass  相似文献   

13.
Achievement of peace, stability, and social justice on a global scale are seen to require fundamental whole-system change. At the deepest level this involves change in the basic premises underlying modern industrial society. Forces that could bring about such a fundamental change are evident. Appropriate use of new understandings of the power of inner imagery and affirmation could help keep the change from being as disruptive and as generative of human misery as have been some such changes in the past. James Miller has identified some of the ubiquitous characteristics of ``Living Systems', including human societies [1]. Maxwell Maltz, in writing about ``Psychocybernetics', has used a simple systems analogue to explain the power of affirmation (``self-fulfilling belief') to heal and to achieve other goals [2]. Gary Schwartz has proposed a multi-level systems model for understanding the power of inner imagery to contribute to healing of the human body [3]. Gregory Bateson includes the concept of ``a larger mind of which the individual mind is only a subsystem...(that) is immanent in the total interconnected social system and includes the planetary ecology' [4]. The following paper extends these concepts to explore conditions for healing the planet and achieving a ``cooperative security system' [5]. One of the most significant characteristics in understanding the behavior of social systems is the presence of feedback.  相似文献   

14.
In low pulse-repetition frequency (PRF) pulse radars, signal-to-noise ratio (SNR) is usually calculated on a per pulse basis and this value is then multiplied by the number of pulses integrated to obtain the SNR for a given duration of target illumination. In high PRF pulse Doppler radars, SNR is usually calculated by using the centerline power of the transmitted signal spectrum as the target return power because the centerline is kept in the receiver and returns of the PRF lines are notched out [1]. We show here that both methods of SNR calculations are entirely equivalent for matched transmit-receive radar systems.  相似文献   

15.
The use of one-cycle control (OCC) for maximum power point tracking (MPPT) and power factor correction (PFC) in grid connected photovoltaic (PV) applications is discussed. Circuit and operating parameters of the one cycle-based controller of a cost-effective single-stage inverter are optimized in order to obtain the best performances of the system under different irradiance levels. Firstly, design constraints are formulated which allow to get a very efficient OCC operation in terms of power extracted from the PV array, stability, and PFC. Afterwards, such constraints are used to perform the parametric optimization of the one cycle controller by means of suitable heuristic approaches. Various selection criteria of the best parameters set under different conditions are discussed and applied. Finally, a customized perturb and observe (P&O) control is applied to the optimized one cycle controlled single-stage inverter in order to perform a real MPPT in presence of varying irradiance conditions. Subjects described here are covered by the Italian Patent Application SA2005A000014-13.07.2005 and PCT Application PCT/IT2005/000747-20.12.2005  相似文献   

16.
针对光伏发电的突变性及昼发夜停特性提出一种新型的基于预测电流控制的光伏并网系统最大功率点跟踪(MPPT)算法。根据实际情况考虑光伏阵列的非线性特性,最大功率点周围光伏电压的振荡及逆变器、滤波器的设计等。为了确保系统采用控制算法的稳定性,MPPT的设计应运而生,在此基础上通过改进算法从光伏系统的电压与电流预测基准电流进而控制光伏并网系统。通过与传统的波动相关控制方法对比给出了仿真结果。仿真结果表明:在光照发生突变时,与传统的波动相关控制法相比,提出的改进算法的跟踪速度较之提升9.3%,并能够准确跟踪光伏并网系统最大功率点,且性能稳定可靠。  相似文献   

17.
Thin-film rechargeable Li-LiMn2O4 batteries have been fabricated and characterized. Following deposition by electron beam evaporation of LiMn2O4, the amorphous as-deposited cathode films 1 cm2 in area by 0.3to 4-μm thick were annealed at 700°C to 800°C in oxygen in order to form the crystalline spinet phase. The specific capacity of the cells between 4.5 V to 3.8 V ranged from 50 μAh/mg to 120 μAh/mg. When cycled over this range, the batteries exhibited excellent secondary performance with capacity losses as low as 0.001% per cycle. On charging to 5.3 V, a plateau with a median voltage of 5.1 V was observed. The total charge extracted between 3.8 V to 5.3 V corresponded to about 1 Li/Mn2 O4  相似文献   

18.
19.
Conceptual designs of out-of-core thermionic space power generators using heat pipes have been produced for various powers, temperatures, and constraints or parameter values. Since major impediments to inpile thermionic systems are alleviated or eliminated in the out-of-core concepts, a competitive degree of feasibility and competitive specific masses are adequate to establish the need for emphasis on these systems in future studies and development activities. Feasibility in the six cases shown here in conceptual detail appears to be limited only by lithium heat-pipe feasibility and a favorable outcome of current technology development of UN, W, and Li materials in the temperature range considered. For example, one man-rated system at 300 kWe and 1800°K shows a specific mass of 8 kg/kWe and will accommodate an 18-meter payload at a 50-meter distance.  相似文献   

20.
《中国航空学报》2022,35(9):58-70
The application of Non-Orthogonal Multiple Access (NOMA) technology into satellite-aerial-ground integrated networks can meet the requirements of ultra-high rate and massive connectivity for the Sixth-Generation (6G) communication systems. We consider an uplink NOMA scenario for such a satellite-aerial-ground integrated network where multiple users communicate with satellite under the help of an Unmanned Aerial Vehicle (UAV) as an aerial relay equipped with a phased array. Supposing that buffer-aided decode-and-forward protocol is adopted at the UAV relay, we first formulate an optimization problem to maximize Ergodic Sum Rate (ESR) of the considered system subject to individual power constraint and quality-of-service constraint of each user. Then, with known imperfect channel state information of each user, we propose a joint power allocation and robust Beam Forming (BF) iterative algorithm to maximize ESR for the user-to-UAV link. Besides, to take the advantages of Free-Space Optical (FSO) and millimeter Wave (mmWave) communications, we present a switch-based hybrid FSO/mmWave scheme and a robust BF algorithm for the UAV-to-satellite link to achieve higher rate. Moreover, a closed-form ESR expression is derived. Finally, the effectiveness and correctness of the proposed solutions are verified by numerical simulations, and the performance evaluation results show that the proposed solutions not only achieve performance enhancement and robustness, but also outperform the orthogonal multiple access significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号