共查询到20条相似文献,搜索用时 0 毫秒
1.
K Wignarajah D L Bubenheim 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):1833-1843
Lettuce plants were grown utilizing water, inorganic elements, and CO2 inputs recovered from waste streams. The impact of these waste-derived inputs on the growth of lettuce was quantified and compared with results obtained when reagent grade inputs were used. Phytotoxicity was evident in both the untreated wastewater stream and the recovered CO2 stream. The toxicity of surfactants in wastewater was removed using several treatment systems. Harmful effects of gaseous products resulting from incineration of inedible biomass on crop growth were observed. No phytotoxicity was observed when inorganic elements recovered from incinerated biomass ash were used to prepare the hydroponic solution, but the balance of nutrients had to be modified to achieve near optimal growth. The results were used to evaluate closure potential of water and inorganic elemental loops for integrated plant growth and human requirements. 相似文献
2.
The Breadboard Project: a functioning CELSS plant growth system. 总被引:1,自引:0,他引:1
W M Knott 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(5):45-52
The primary objective of the Breadboard project for the next 3-4 years is to develop, integrate and operate a Controlled Ecological Life Support System (CELSS) at a one person scale. The focus of this project over the past two years has been the development of the plant growth facility, the first module of the CELSS. The other major modules, food preparation, biomass processing, and resource recovery, have been researched at the laboratory scale during the past two years and facilities are currently under construction to scale-up these modules to an operational state. This paper will outline the design requirements for the Biomass Production Chamber (BPC), the plant growth facility for the project, and the control and monitoring subsystems which operate the chamber and will present results from both engineering and biological tests of the facility. Three production evaluations of wheat, conducted in the BPC during the past year, will be described and the data generated from these tests discussed. Future plans for the BPC will be presented along with future goals for the project as the other modules become active. 相似文献
3.
C Chun C A Mitchell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):1855-1860
A procedure for dynamic optimization of net photosynthetic rate (Pn) for crop production in Controlled Ecological Life-Support Systems (CELSS) was developed using leaf lettuce as a model crop. Canopy Pn was measured in real time and fed back for environmental control. Setpoints of photosynthetic photon flux (PPF) and CO2 concentration for each hour of the crop-growth cycle were decided by computer to reach a targeted Pn each day. Decision making was based on empirical mathematical models combined with rule sets developed from recent experimental data. Comparisons showed that dynamic control resulted in better yield per unit energy input to the growth system than did static control. With comparable productivity parameters and potential for significant energy savings, dynamic control strategies will contribute greatly to the sustainability of space-deployed CELSS. 相似文献
4.
R F Strayer B W Finger M P Alazraki 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):2023-2028
The focus of resource recovery research at the KSC-CELSS Breadboard Project has been the evaluation of microbiologically mediated biodegradation of crop residues by manipulation of bioreactor process and environmental variables. We will present results from over 3 years of studies that used laboratory- and breadboard-scale (8 and 120 L working volumes, respectively) aerobic, fed-batch, continuous stirred tank reactors (CSTR) for recovery of carbon and minerals from breadboard grown wheat and white potato residues. The paper will focus on the effects of a key process variable--bioreactor retention time--on response variables indicative of bioreactor performance. The goal is to determine the shortest retention time that is feasible for processing CELSS crop residues, thereby reducing bioreactor volume and weight requirements. Pushing the lower limits of bioreactor retention times will provide useful data for engineers who need to compare biological and physicochemical components. Bioreactor retention times were manipulated to range between 0.25 and 48 days. Results indicate that increases in retention time lead to a 4-fold increase in crop residue biodegradation, as measured by both dry weight losses and CO2 production. A similar overall trend was also observed for crop residue fiber (cellulose and hemicellulose), with a noticeable jump in cellulose degradation between the 5.3 day and 10.7 day retention times. Water-soluble organic compounds (measured as soluble TOC) were appreciably reduced by more than 4-fold at all retention times tested. Results from a study of even shorter retention times (down to 0.25 days), in progress, will also be presented. 相似文献
5.
M Oguchi K Otsubo K Nitta A Shimada S Fujii T Koyano K Miki 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(8):169-177
In CELSS (Controlled Ecological Life Support System), utilization of photosynthetic algae is an effective means for obtaining food and oxygen at the same time. We have chosen Spirulina, a blue-green alga, and have studied possibilities of algae utilization. We have developed an advanced algae cultivation system, which is able to produce algae continuously in a closed condition. Major features of the new system are as follows. (1) In order to maintain homogeneous culture conditions, the cultivator was designed so as to cause a swirl on medium circulation. (2) Oxygen gas separation and carbon dioxide supply are conducted by a newly designed membrane module. (3) Algae mass and medium are separated by a specially designed harvester. (4) Cultivation conditions, such as pH, temperature, algae growth rate, light intensity and quantity of generated oxygen gas are controlled by a computer system and the data are automatically recorded. This equipment is a primary model for ground experiments in order to obtain some design data for space use. A feasibility of algae cultivation in a closed condition is discussed on the basis of data obtained by use of this new system. 相似文献
6.
M Kliss R MacElroy B Borchers M Farrance T Nelson C Blackwell B Yendler J Tremor 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):61-69
The NASA CELSS program has the goal of developing life support systems for humans in space based on the use of higher plants. The program has supported research at universities with a primary focus of increasing the productivity of candidate crop plants. To understand the effects of the space environment on plant productivity, the CELSS Test Facility (CTF) has been been conceived as an instrument that will permit the evaluation of plant productivity on Space Station Freedom. The CTF will maintain specific environmental conditions and collect data on gas exchange rates and biomass accumulation over the growth period of several crop plants grown sequentially from seed to harvest. The science requirements of the CTF will be described, as will current design concepts and specific technology requirements for operation in micro-gravity. 相似文献
7.
Y Ishikawa H Yoshida M Kinoshita A Murakami K Sugiura 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(7):1517-1527
Research of the effect of space environment on an ecosystem consisting of plants and animals is essential when they are to be positively used in space. Although there have been experiments on various organisms under space environment in the past, they mainly studied the effect of space environment on an individual organism or a single species. Microcosm is drawing attention as an experimental material of an ecosystem consisting of multiple species. The object in this research is to understand the nature of this network system called ecosystem. Thus, a mixed microorganism culturing system consisting of three types of microorganisms which form a minimum food chain system as a closed ecosystem (chlorella as the producer, bacteria as the decomposer, and rotifer as the consumer) was taken for the subject, on which to research the universal characteristics of ecosystems. From the results of experiments under the terrestrial environment, formation of colonies, which is an ecological structure, has been observed at its mature stage. The organisms form an optimal substance circulation system. Therefore, formation of colonies in simulation models is important. Many attempts have been made to create ecosystem models. For example, the Lotka-Volterra model forms a simultaneous equation with the differential equation expressing predator and prey relationship and many numerical calculations have been conducted on various ecosystems based on expanded L-V models. Conventionally, these top-down methods have been used. However, since this method only describes the average concentration of organisms that are distributed uniformly throughout the system and cannot express the spatial structure of the system, it was difficult to express ecosystem structures like colonies and density distributions. In actual ecosystems, there is heterogeneity in the number of individuals and in substance density, and this is thought to have great significance in ecosystems. Consequently, an individual-based model was used that applies rules to predator-prey relationship, suppression, production, self suppression, etc., of each species. It enabled the emergence of the overall system only by its local rules, and it was possible to reproduce colony generation. In addition, the transition and the ratio of populations for each species match well with experimental results. 相似文献
8.
C L Mackowiak R M Wheeler G W Stutte N C Yorio J C Sager 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):1815-1820
Plant-derived nutrients were successfully recycled in a Controlled Ecological Life Support System (CELSS) using biological methods. The majority of the essential nutrients were recovered by microbiologically treating the plant biomass in an aerobic bioreactor. Liquid effluent containing the nutrients was then returned to the biomass production component via a recirculating hydroponic system. Potato (Solanum tuberosum L.) cv. Norland plants were grown on those nutrients in either a batch production mode (same age plants on a nutrient solution) or a staggered production mode (4 different ages of plants on a nutrient solution). The study continued over a period of 418 days, within NASA Breadboard Project's Biomass Production Chamber at the Kennedy Space Center. During this period, four consecutive batch cycles (104-day harvests) and 13 consecutive staggered cycles (26-day harvests) were completed using reclaimed minerals and compared to plants grown with standard nutrient solutions. All nutrient solutions were continually recirculated during the entire 418 day study. In general, tuber yields with reclaimed minerals were within 10% of control solutions. Contaminants, such as sodium and recalcitrant organics tended to increase over time in solutions containing reclaimed minerals, however tuber composition was comparable to tubers grown in the control solutions. 相似文献
9.
S I Bartsev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(7):1675-1682
The term Closed Ecological System (CES) is in wide use. However there is no generally accepted measure of the closure of ecological systems. In order to obtain reproducibility of experiments with natural and man-made CES (with respect to degree of closure) some universal estimate needs to be developed. Understanding ecological systems as a network and closure as the degree of matter recycling allows the use of matrix graphs. Graphs are very natural forms for the presentation of the network of matter flows in ecosystems. An estimate equal to the sum of products of weights of oriented edges that constitute contour is suggested as a measure of the degree of closure in ecosystems. It is shown that this estimate can be uniformly applied to ecosystems of arbitrary size and configuration of flows. 相似文献
10.
C h Lasseur D Massimino J L Renou C h Richaud 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(8):111-116
Studies for every level of CELSS: Waste processing, food production, photosynthesis system, and so on ..., imply an automatic system to control, command and quantify gases, water and chemical compounds. Used for many years in plant physiology studies, the C23A system monitors the analysis and quantifies gases (O2, CO2. N2, ...), physical parameters (temperature, humidity, ...) and chemical compounds (NH4+, N03-, ...) on numerous experiments. In the new version, the architecture of the computing system is near of the space requirements. We have chosen a structure with three independent levels: acquisition, monitoring and supervision. Moreover, we use multiplexed analysers: IRGA, mass spectrometer and cheminal analyser. The multiplexing increases the accuracy of the measurements and could facilitate the spatialization. Thus the whole structure anticipates the entire separation between automation in space and control-command on ground. 相似文献
11.
L A Spomer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):411-416
The major functions of soil relative to plant growth include retention and supply of water and minerals, provision of anchorage and support for the root, and provision of an otherwise adequate physical and chemical environment to ensure an extensive, functioning root system. The physical and chemical nature of the solid matrix constituting a soil interacts with the soil confinement configuration, the growing environment, and plant requirements to determine the soil's suitability for plant growth. A wide range of natural and manufactured terrestrial materials have proven adequate soils provided they are not chemically harmful to plants (or animals eating the plants), are suitably prepared for the specific use, and are used in a compatible confinement system. It is presumed this same rationale can be applied to planetary soils for growing plants within any controlled environment life support system (CELSS). The basic concepts of soil and soil-plant interactions are reviewed relative to using soils constituted from local planetary materials for growing plants. 相似文献
12.
M Kliss C Blackwell A Zografos M Drews R MacElroy R McKenna A G Heyenga 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(1):263-270
As part of the NASA Advanced Life Support Flight Program, a Controlled Ecological Life Support System (CELSS) Test Facility Engineering Development Unit has been constructed and is undergoing initial operational testing at NASA Ames Research Center. The Engineering Development Unit (EDU) is a tightly closed, stringently controlled, ground-based testbed which provides a broad range of environmental conditions under which a variety of CELSS higher plant crops can be grown. Although the EDU was developed primarily to provide near-term engineering data and a realistic determination of the subsystem and system requirements necessary for the fabrication of a comparable flight unit, the EDU has also provided a means to evaluate plant crop productivity and physiology under controlled conditions. This paper describes the initial closed operational testing of the EDU, with emphasis on the hardware performance capabilities. Measured performance data during a 28-day closed operation period are compared with the specified functional requirements, and an example of inferring crop growth parameters from the test data is presented. Plans for future science and technology testing are also discussed. 相似文献
13.
C Greene D L Bubenheim K Wignarajah 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):1949-1958
Plant-microbe interactions, such as those of the rhizosphere, may be ideally suited for recycling water in a Controlled Ecological Life Support System (CELSS). The primary contaminant of waste hygiene water will be surfactants or soaps. We identified changes in the microbial ecology in the rhizosphere of hydroponical1y grown lettuce during exposure to surfactant. Six week old lettuce plants were transferred into a chamber with a recirculating hydroponic system. Microbial density and population composition were determined for the nutrient solution prior to introduction of plants and then again with plants prior to surfactant addition. The surfactant Igepon was added to the recirculating nutrient solution to a final concentration of 1.0 g L-1. Bacteria density and species diversity of the solution were monitored over a 72-h period following introduction of Igepon. Nine distinct bacterial types were identified in the rhisosphere; three species accounted for 87% of the normal rhizosphere population. Microbial cell number increased in the presence of Igepon, however species diversity declined. At the point when Igepon was degraded from solution, diversity was reduced to only two species. Igepon was found to be degraded directly by only one species found in the rhizosphere. Since surfactants are degraded from the waste hygiene water within 24 h, the potential for using rhizosphere bacteria as a waste processor in a CELSS is promising. 相似文献
14.
15.
D L Bubenheim K Wignarajah 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):2029-2035
The goal of resource recovery in a regenerative life support system is maintenance of product quality to sure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration is all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match the control treatment, and ash only quality formulated with reagent grade chemicals. When nutrient solutions were formulated using only ash following incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in a suppression of crop growth. When the ash is supplemented with reagent grade chemicals to establish the same balance as in the control--growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals but matching the quality of the ash only treatment resulted in similar growth to that of the ash only treatment. The ash product resulting from incineration of inedible biomass appears to be a suitable form for recycle of inorganic nutrients to crop production. 相似文献
16.
B G Thompson B H Lake 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1987,7(4):133-140
Mutations occur at a higher rate in space than under terrestrial conditions, primarily due to an increase in radiation levels. These mutations may effect the productivity of plants found in a controlled ecological life support system (CELSS). Computer simulations of plants with different ploidies, modes of reproduction, lethality thresholds, viability thresholds and susceptibilities to radiation induced mutations were performed under space normal and solar flare conditions. These simulations identified plant characteristics that would enable plants to retain high productivities over time in a CELSS. 相似文献
17.
S.G. Ungar S.N. Goward 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(2):291-295
Improvements in crop discrimination can be realized by using mid-IR bands (1.55–1.75 μm and 2.08–2.35 μm) which are sensitive to canopy moisture content. Analyses of data from two growing seasons in Webster County, Iowa clearly indicate that corn and soybeans are highly separable in the mid-IR from early season through harvest. This contrasts sharply with visible and near-IR bands where corn and soybeans are confused throughout much of the growing season. The mid-IR temporal reflectance behavior appears to result from differences between C4 monocot and C3 dicot internal leaf structure. If this hypothesis holds, mid-IR observations should improve discrimination in other instances where similar differences in internal leaf structure are present. 相似文献
18.
G-H Wang G-B Li C-X Hu Y-D Liu L-R Song G-H Tong X-M Liu E-T Cheng 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(6):1455-1460
A simple Closed Aquatic Ecosystem (CAES) consisting of single-celled green algae (Chlorella pyrenoidosa, producer), a spiral snail (Bulinus australianus, consumer) and a data acquisition and control unit was flown on the Chinese Spacecraft SHENZHOU-II in January 2001 for 7 days. In order to study the effect of microgravity on the operation of CAES, a 1 g centrifuge reference group in space, a ground 1 g reference group and a ground 1 g centrifuge reference group (1.4 g group) were run concurrently. Real-time data about algae biomass (calculated from transmission light intensity), temperature, light and centrifugation of the CAES were logged at minute intervals. It was found that algae biomass of both the microgravity group and the ground 1 g-centrifuge reference group (1.4 g) fluctuated during the experiment, but the algae biomass of the 1 g centrifuge reference group in space and the ground 1 g reference group increased during the experiment. The results may be attributable to influences of microgravity and 1.4 g gravity on the algae and snails metabolisms. Microgravity is the main factor to affect the operation of CAES in space and the contribution of microgravity to the effect was also estimated. These data may be valuable for the establishment of a complex CELSS in the future. 相似文献
19.
J Cavazzoni 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(7):1528-1538
System-level analyses for Advanced Life Support require mathematical models for various processes, such as for biomass production and waste management, which would ideally be integrated into overall system models. Explanatory models (also referred to as mechanistic or process models) would provide the basis for a more robust system model, as these would be based on an understanding of specific processes. However, implementing such models at the system level may not always be practicable because of their complexity. For the area of biomass production, explanatory models were used to generate parameters and multivariable polynomial equations for basic models that are suitable for estimating the direction and magnitude of daily changes in canopy gas-exchange, harvest index, and production scheduling for both nominal and off-nominal growing conditions. 相似文献
20.
W F Dempster 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):331-335
Atmospheric leakage between a CELSS and its surround is driven by the differential pressure between the two. In an earth-based CELSS, both negative and positive differential pressures of atmosphere are created as the resultant of three influences: thermal expansion/contraction, transition of water between liquid and vapor phases, and external barometric pressure variations. The resultant may typically be on the order of 5000 pascals. By providing a flexible expansion chamber, the differential pressure range can be reduced two, or even three, orders of magnitude, which correspondingly reduces the leakage. The expansion chamber itself can also be used to measure the leak rate. Independent confirmation is possible by measurement of the progressive dilution of a trace gas. These methods as employed at the Biosphere 2 facility have resulted in an estimated atmospheric leak rate of less than 10 percent per year. 相似文献